organic compounds
1-Carboxy-3-phenylpropan-2-aminium chloride
aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za
The title compound, C9H12NO2+·Cl−, is the hydrochloride of an N-substituted glycine derivative. The non-H atoms of the alkyl part of the molecule lie nearly in a plane (r.m.s. deviation of all fitted non-H atoms = 0.0142 Å). In the O—H⋯Cl, N—H⋯Cl and C—H⋯O hydrogen bonds involving both O atoms as well as C—H⋯Cl contacts connect the components of the title compound into a three-dimensional network.
Related literature
For the N-benzylglycine as a ligand, see: Freiesleben et al. (1995). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).
of a palladium coordination compound featuring the ethyl ester ofExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811041638/aa2029sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S1600536811041638/aa2029Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536811041638/aa2029Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536811041638/aa2029Isup4.cml
The compound was obtained commercially (Fluka). Crystals suitable for the X-ray diffraction study were obtained upon slow evaporation of an aqueous solution of the compound at ambient temperature.
Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 0.99 Å for the methylene group) and were included in the
in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level). | |
Fig. 2. Selected intermolecular contacts, viewed along [0 - 1 0]. Blue dashed lines indicate classical hydrogen bonds, green dashed lines C–H···O contacts. Symmetry operators: i -x + 1, y - 1/2, -z + 1/2; ii -x + 2, y - 1/2, -z + 1/2. | |
Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level). |
C9H12NO2+·Cl− | F(000) = 424 |
Mr = 201.65 | Dx = 1.338 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 7358 reflections |
a = 5.0290 (7) Å | θ = 2.3–28.5° |
b = 5.4900 (8) Å | µ = 0.35 mm−1 |
c = 36.254 (5) Å | T = 200 K |
V = 1000.9 (2) Å3 | Platelet, colourless |
Z = 4 | 0.53 × 0.40 × 0.07 mm |
Bruker APEXII CCD diffractometer | 2376 independent reflections |
Radiation source: fine-focus sealed tube | 2273 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans | θmax = 28.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→6 |
Tmin = 0.585, Tmax = 1.000 | k = −7→6 |
7535 measured reflections | l = −47→47 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.177 | w = 1/[σ2(Fo2) + (0.P)2 + 3.0055P] where P = (Fo2 + 2Fc2)/3 |
S = 1.34 | (Δ/σ)max < 0.001 |
2376 reflections | Δρmax = 0.33 e Å−3 |
125 parameters | Δρmin = −0.57 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 903 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.1 (3) |
C9H12NO2+·Cl− | V = 1000.9 (2) Å3 |
Mr = 201.65 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.0290 (7) Å | µ = 0.35 mm−1 |
b = 5.4900 (8) Å | T = 200 K |
c = 36.254 (5) Å | 0.53 × 0.40 × 0.07 mm |
Bruker APEXII CCD diffractometer | 2376 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2273 reflections with I > 2σ(I) |
Tmin = 0.585, Tmax = 1.000 | Rint = 0.048 |
7535 measured reflections |
R[F2 > 2σ(F2)] = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.177 | Δρmax = 0.33 e Å−3 |
S = 1.34 | Δρmin = −0.57 e Å−3 |
2376 reflections | Absolute structure: Flack (1983), 903 Friedel pairs |
125 parameters | Absolute structure parameter: 0.1 (3) |
0 restraints |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8269 (6) | 0.7682 (8) | 0.26326 (8) | 0.0246 (7) | |
H1 | 0.7157 | 0.7732 | 0.2805 | 0.037* | |
O2 | 0.4647 (6) | 0.7619 (9) | 0.22798 (8) | 0.0277 (7) | |
N1 | 0.7400 (7) | 0.7563 (9) | 0.16416 (10) | 0.0223 (7) | |
H71 | 0.661 (12) | 0.894 (12) | 0.1630 (17) | 0.033* | |
H72 | 0.585 (12) | 0.623 (10) | 0.1641 (16) | 0.033* | |
C1 | 0.7017 (8) | 0.7659 (11) | 0.23163 (12) | 0.0225 (8) | |
C2 | 0.8894 (8) | 0.7703 (11) | 0.19964 (11) | 0.0252 (9) | |
H2A | 0.9953 | 0.9222 | 0.2003 | 0.030* | |
H2B | 1.0136 | 0.6308 | 0.2014 | 0.030* | |
C3 | 0.9244 (10) | 0.7587 (12) | 0.13153 (11) | 0.0314 (9) | |
H3A | 1.0672 | 0.6371 | 0.1353 | 0.038* | |
H3B | 1.0085 | 0.9212 | 0.1294 | 0.038* | |
C11 | 0.7770 (10) | 0.7013 (9) | 0.09631 (13) | 0.0292 (11) | |
C12 | 0.8329 (16) | 0.4968 (12) | 0.07646 (18) | 0.0483 (17) | |
H12 | 0.9657 | 0.3870 | 0.0849 | 0.058* | |
C13 | 0.6936 (18) | 0.4473 (14) | 0.04329 (18) | 0.056 (2) | |
H13 | 0.7350 | 0.3046 | 0.0296 | 0.068* | |
C14 | 0.5016 (16) | 0.6007 (14) | 0.03072 (17) | 0.0542 (19) | |
H14 | 0.4067 | 0.5654 | 0.0087 | 0.065* | |
C15 | 0.4480 (15) | 0.8087 (12) | 0.05065 (15) | 0.0494 (17) | |
H15 | 0.3177 | 0.9202 | 0.0420 | 0.059* | |
C16 | 0.5817 (13) | 0.8566 (11) | 0.08306 (15) | 0.0396 (13) | |
H16 | 0.5390 | 0.9994 | 0.0966 | 0.048* | |
Cl1 | 0.4309 (2) | 0.2582 (2) | 0.16068 (3) | 0.0287 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0225 (13) | 0.0257 (17) | 0.0256 (14) | 0.0029 (17) | −0.0031 (11) | 0.0055 (18) |
O2 | 0.0164 (13) | 0.0295 (16) | 0.0370 (16) | −0.0029 (19) | −0.0019 (12) | −0.001 (2) |
N1 | 0.0199 (16) | 0.0205 (16) | 0.0266 (16) | −0.0063 (19) | −0.0008 (13) | 0.000 (2) |
C1 | 0.0207 (18) | 0.012 (2) | 0.035 (2) | −0.002 (2) | −0.0030 (16) | 0.005 (2) |
C2 | 0.0186 (19) | 0.027 (2) | 0.030 (2) | 0.011 (2) | −0.0074 (16) | −0.001 (2) |
C3 | 0.026 (2) | 0.035 (2) | 0.034 (2) | 0.002 (4) | 0.0066 (19) | 0.002 (3) |
C11 | 0.030 (2) | 0.031 (3) | 0.027 (2) | −0.008 (2) | 0.0090 (19) | 0.0008 (19) |
C12 | 0.069 (5) | 0.034 (3) | 0.042 (3) | 0.007 (3) | 0.008 (3) | −0.002 (3) |
C13 | 0.082 (6) | 0.049 (4) | 0.039 (3) | −0.007 (4) | 0.012 (4) | −0.013 (3) |
C14 | 0.063 (5) | 0.069 (5) | 0.031 (3) | −0.019 (4) | −0.002 (3) | −0.010 (3) |
C15 | 0.052 (4) | 0.064 (5) | 0.032 (3) | −0.002 (4) | −0.007 (3) | −0.003 (3) |
C16 | 0.040 (3) | 0.048 (3) | 0.031 (3) | −0.001 (3) | 0.002 (3) | −0.005 (2) |
Cl1 | 0.0357 (5) | 0.0192 (4) | 0.0312 (5) | −0.0014 (7) | 0.0024 (5) | −0.0005 (6) |
O1—C1 | 1.308 (5) | C3—H3B | 0.9900 |
O1—H1 | 0.8400 | C11—C12 | 1.363 (8) |
O2—C1 | 1.199 (5) | C11—C16 | 1.386 (8) |
N1—C2 | 1.492 (5) | C12—C13 | 1.418 (10) |
N1—C3 | 1.503 (5) | C12—H12 | 0.9500 |
N1—H71 | 0.86 (6) | C13—C14 | 1.360 (11) |
N1—H72 | 1.07 (6) | C13—H13 | 0.9500 |
C1—C2 | 1.496 (6) | C14—C15 | 1.378 (9) |
C2—H2A | 0.9900 | C14—H14 | 0.9500 |
C2—H2B | 0.9900 | C15—C16 | 1.379 (8) |
C3—C11 | 1.510 (6) | C15—H15 | 0.9500 |
C3—H3A | 0.9900 | C16—H16 | 0.9500 |
C1—O1—H1 | 109.5 | C11—C3—H3B | 109.4 |
C2—N1—C3 | 111.5 (3) | H3A—C3—H3B | 108.0 |
C2—N1—H71 | 103 (4) | C12—C11—C16 | 118.0 (5) |
C3—N1—H71 | 104 (4) | C12—C11—C3 | 121.1 (5) |
C2—N1—H72 | 114 (3) | C16—C11—C3 | 120.8 (5) |
C3—N1—H72 | 117 (3) | C11—C12—C13 | 120.2 (7) |
H71—N1—H72 | 105 (5) | C11—C12—H12 | 119.9 |
O2—C1—O1 | 125.1 (4) | C13—C12—H12 | 119.9 |
O2—C1—C2 | 122.8 (4) | C14—C13—C12 | 121.1 (7) |
O1—C1—C2 | 112.1 (4) | C14—C13—H13 | 119.5 |
N1—C2—C1 | 110.5 (3) | C12—C13—H13 | 119.5 |
N1—C2—H2A | 109.6 | C13—C14—C15 | 118.5 (6) |
C1—C2—H2A | 109.6 | C13—C14—H14 | 120.8 |
N1—C2—H2B | 109.6 | C15—C14—H14 | 120.8 |
C1—C2—H2B | 109.6 | C14—C15—C16 | 120.6 (7) |
H2A—C2—H2B | 108.1 | C14—C15—H15 | 119.7 |
N1—C3—C11 | 111.1 (4) | C16—C15—H15 | 119.7 |
N1—C3—H3A | 109.4 | C15—C16—C11 | 121.5 (6) |
C11—C3—H3A | 109.4 | C15—C16—H16 | 119.2 |
N1—C3—H3B | 109.4 | C11—C16—H16 | 119.2 |
C3—N1—C2—C1 | −179.6 (5) | C3—C11—C12—C13 | −179.5 (6) |
O2—C1—C2—N1 | −2.8 (9) | C11—C12—C13—C14 | −0.4 (11) |
O1—C1—C2—N1 | 177.5 (5) | C12—C13—C14—C15 | 1.1 (11) |
C2—N1—C3—C11 | 170.2 (5) | C13—C14—C15—C16 | −1.6 (10) |
N1—C3—C11—C12 | −115.9 (6) | C14—C15—C16—C11 | 1.3 (10) |
N1—C3—C11—C16 | 64.6 (7) | C12—C11—C16—C15 | −0.5 (9) |
C16—C11—C12—C13 | 0.0 (9) | C3—C11—C16—C15 | 179.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl1i | 0.84 | 2.26 | 3.048 (3) | 157 |
N1—H71···Cl1ii | 0.86 (6) | 2.31 (6) | 3.166 (5) | 178 (6) |
N1—H72···Cl1 | 1.07 (6) | 2.15 (6) | 3.148 (5) | 154 (5) |
C2—H2A···O1iii | 0.99 | 2.48 | 3.364 (7) | 148 |
C2—H2B···O1iv | 0.99 | 2.50 | 3.383 (7) | 148 |
C2—H2B···O2v | 0.99 | 2.57 | 3.070 (5) | 111 |
C16—H16···Cl1ii | 0.95 | 2.78 | 3.654 (6) | 154 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C9H12NO2+·Cl− |
Mr | 201.65 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 200 |
a, b, c (Å) | 5.0290 (7), 5.4900 (8), 36.254 (5) |
V (Å3) | 1000.9 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.53 × 0.40 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.585, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7535, 2376, 2273 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.080, 0.177, 1.34 |
No. of reflections | 2376 |
No. of parameters | 125 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.57 |
Absolute structure | Flack (1983), 903 Friedel pairs |
Absolute structure parameter | 0.1 (3) |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl1i | 0.84 | 2.26 | 3.048 (3) | 157.0 |
N1—H71···Cl1ii | 0.86 (6) | 2.31 (6) | 3.166 (5) | 178 (6) |
N1—H72···Cl1 | 1.07 (6) | 2.15 (6) | 3.148 (5) | 154 (5) |
C2—H2A···O1iii | 0.99 | 2.48 | 3.364 (7) | 148.4 |
C2—H2B···O1iv | 0.99 | 2.50 | 3.383 (7) | 148.4 |
C2—H2B···O2v | 0.99 | 2.57 | 3.070 (5) | 111.4 |
C16—H16···Cl1ii | 0.95 | 2.78 | 3.654 (6) | 154.1 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) x+1, y, z. |
Acknowledgements
The authors thank Dr Marc van der Vyver for helpful discussions.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Freiesleben, D., Polborn, K., Robl, C., Sünkel, K. & Beck, W. (1995). Can. J. Chem. 73, 1164–1174. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Amino acids play a major role in the metabolism of living creatures and are characterized by their omnipresence as well as their easy availability in both nature as well as industry. From a chemical viewpoint, their molecular set-up denotes them as potential chelate ligands whose denticity and charge can be influenced by simple variation of the pH value. Coordination compounds featuring amino acids in their ligand sphere might have interesting pharmaceutical properties, especially when keeping in mind that derivatization of the respective amino acids can be used for fine-tuning thermodynamic as well as kinetic characteristics of the compounds and the tailoring of secretion rates on grounds of hydrophilicity. In our continuous efforts in elucidating the rules guiding the formation of N,O-supported chelate ligands, we investigated the crystal structure of the title compound to enable comparative studies of metrical parameters in envisioned metal complexes. Information about the molecular and crystal structure of a palladium coordination compound featuring the ethyl ester of N-benzylglycine is apparent in the literature (Freiesleben et al., 1995).
Intracyclic C–C–C angles cover a range of 118.0 (5)–121.5 (6) ° with the smallest angle found on the substituted carbon atom and the biggest angle in ortho position to this atom. The non-hydrogen atoms of the alkyl part of the molecule are nearly in plane (r.m.s of all fitted non-hydrogen atoms = 0.0142 Å). The least-squares planes defined by these atoms on the one hand and the carbon atoms of the aromatic system on the other hand enclose an angle of 60.21 (21) ° (Fig. 1).
In the crystal structure, classical hydrogen bonds as well as C–H···O contacts and C–H···Cl contacts whose range falls by up to more than 0.2 Å below the sum of van-der-Waals radii of the respective atoms are observed. The classical hydrogen bonds are apparent between the nitrogen- and oxygen-bonded hydrogen atoms as donors and – exclusively – the chloride anion as acceptor While the C–H···O contacts are apparent between both hydrogen atoms of the amino acid's methylene group and the oxygen atom of the hydroxyl group, the C–H···Cl contacts stem from one of the aromatic system's hydrogen atoms in ortho position to the substituent. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unitary level while the C–H-supported contacts necessitate a DC11(4)C11(4) descriptor on the same level. The C–H···O contacts are present as antidromic chains. In total, the entities of the title compound are connected to a three-dimensional network. π-Stacking is not a prominent feature with the shortest intercentroid distance between two aromatic systems found at 5.029 (4) Å, the length of the a axis (Fig. 2).
The packing of the title compound in the crystal is shown in Figure 3.