metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(nitrato-κO)bis­­[4,4,5,5-tetra­methyl-2-(5-methyl-1H-imidazol-4-yl-κN3)-2-imidazoline-1-oxyl 3-oxide-κO]nickel(II)

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China
*Correspondence e-mail: gaozhy201@sohu.com

(Received 4 September 2011; accepted 30 September 2011; online 8 October 2011)

In the centrosymmetric mononuclear title complex, [Ni(NO3)2(C11H17N4O2)2], the NiII atom displays a distorted octa­hedral coordination geometry and is six-coordinated by two N,O-bidentate nitronyl nitroxide radical ligands and two monodentate nitrate anions.

Related literature

For general background to mol­ecular magnetic materials, see: Li et al. (2004[Li, L. C., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2004). Inorg. Chim. Acta, 357, 405-410.]); Wang et al. (2008[Wang, Y. F., Wang, L. Y. & Ma, L. F. (2008). J. Mol. Struct. 877, 138-144.]); Yamamoto et al. (2001[Yamamoto, Y., Suzuki, T. & Kaizaki, S. (2001). J. Chem. Soc. Dalton Trans. pp. 1566-1572.]). For the synthesis, see: Ullman et al. (1970[Ullman, E. F., Call, L. & Osieckei, J. H. (1970). J. Org. Chem. 35, 3623-3628.], 1972[Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049-7059.]). For the related isomorphous Co complex, see: Gao et al. (2010[Gao, Z. Y., Guo, H. J. & Zhang, W. B. (2010). Acta Cryst. E66, m19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NO3)2(C11H17N4O2)2]

  • Mr = 657.30

  • Monoclinic, P 21 /n

  • a = 7.8313 (5) Å

  • b = 10.7772 (8) Å

  • c = 17.3009 (12) Å

  • β = 101.464 (1)°

  • V = 1431.07 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 295 K

  • 0.43 × 0.17 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.741, Tmax = 0.939

  • 12170 measured reflections

  • 3280 independent reflections

  • 2891 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.084

  • S = 1.03

  • 3280 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design and synthesis of molecular-based magnetic materials with ferromagnetic ordering is one of the focus in molecular materials research (Yamamoto et al., 2001). In the preparation of molecular magnetic materials,transition metal complexes with organic radical ligands have found widespread interest in recent years (Li et al., 2004; Gao et al., 2010; Wang et al., 2008). A wide variety of transition metal complexes have been prepared with nitronyl nitroxide radical ligands. In this contribution, we report the synthesis and crystal structure of the title NiII complex Ni(NO3)2(C11H17N4O2)2 (I).

An ellipsoid plot of I is shown in Fig.1. The nickel(II) ion presents a distorted octahedral coordination environment, and it is coordinated by two monodentate nitrate anions and two chelating nitronyl nitroxide radicals which lead two six-membered rings.

The complex is very similar to a recently published one (Gao et al., 2010) where the nitrate anions in (I) are replaced by methanol molecules, and charge balance is achieved via two non bonded perchlorate counteranions.

Related literature top

For general background to molecular magnetic materials, see: Li et al. (2004); Wang et al. (2008); Yamamoto et al. (2001). For the synthesis, see: Ullman et al. (1970, 1972). For a related structure, see: Gao et al. (2010).

Experimental top

The nitronyl nitroxide radical, 4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2-imidazoline-1-oxyl-3-oxide, was prepared according to the literature method (Ullman et al. 1970; Ullman et al. 1972). The title complex [Ni(NO3)2(C11H17N4O2)2] was synthesized by adding Ni(NO3)2.6H2O (0.25 mmol) to 25 ml of an ethanol solution containing the nitroxide radical ligands(0.50 mmol). The mixture was stirred for 3 h at room temperature and then filtered off. The blue filtrate was allowed to stand at room temperature and dark blue crystals suitable for X-ray analysis were obtained after two weeks.

Refinement top

All H atoms attached to C and N atom were posiitoned geometrically and treated as riding with C—H = 0.93 Å(methine) or 0.96 Å(methyl),N—H = 0.86Å. Those pertaining to methyl groups were allowed to rotate as well. Displacement factors were taken as Uiso(H) = 1.2Ueq(Cmethine) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker , 2002); data reduction: SAINT (Bruker , 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of the title complex with atom labelling. Displacement ellipsoids are drawn at 50% probability level [symmetry code A:-x,-y + 2,-z].
Bis(nitrato-κO)bis[4,4,5,5-tetramethyl-2-(5-methyl-1H-imidazol- 4-yl-κN3)-2-imidazoline-1-oxyl 3-oxide-κO]nickel(II) top
Crystal data top
[Ni(NO3)2(C11H17N4O2)2]F(000) = 688
Mr = 657.30Dx = 1.525 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4292 reflections
a = 7.8313 (5) Åθ = 2.7–28.3°
b = 10.7772 (8) ŵ = 0.75 mm1
c = 17.3009 (12) ÅT = 295 K
β = 101.464 (1)°Block, dark blue
V = 1431.07 (17) Å30.43 × 0.17 × 0.09 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3280 independent reflections
Radiation source: fine-focus sealed tube2891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.741, Tmax = 0.939k = 1314
12170 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.047P)2 + 0.4906P]
where P = (Fo2 + 2Fc2)/3
3280 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ni(NO3)2(C11H17N4O2)2]V = 1431.07 (17) Å3
Mr = 657.30Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8313 (5) ŵ = 0.75 mm1
b = 10.7772 (8) ÅT = 295 K
c = 17.3009 (12) Å0.43 × 0.17 × 0.09 mm
β = 101.464 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2891 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.939Rint = 0.016
12170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
3280 reflectionsΔρmin = 0.29 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00001.00000.00000.02551 (9)
O10.00030 (13)0.87872 (10)0.09062 (7)0.0356 (3)
O20.56556 (16)0.72951 (13)0.14208 (11)0.0628 (4)
O30.11891 (17)1.14165 (13)0.06167 (9)0.0535 (4)
O40.0728 (2)1.27774 (17)0.11237 (13)0.0793 (5)
O50.1945 (2)1.29491 (15)0.12542 (11)0.0695 (5)
N10.13496 (15)0.80628 (12)0.11228 (7)0.0293 (3)
N20.40216 (17)0.73607 (13)0.13945 (9)0.0389 (3)
N30.25299 (15)1.03606 (12)0.04597 (7)0.0288 (3)
N40.50665 (16)1.12494 (12)0.08397 (8)0.0341 (3)
H4D0.58731.18010.08770.041*
N50.07686 (18)1.23919 (14)0.10055 (9)0.0409 (3)
C10.30161 (18)0.83775 (14)0.11699 (9)0.0293 (3)
C20.1134 (2)0.68040 (14)0.14566 (10)0.0335 (3)
C30.2948 (2)0.62185 (15)0.14399 (10)0.0378 (4)
C40.0799 (3)0.70293 (19)0.22840 (12)0.0527 (5)
H4A0.02330.75230.22520.079*
H4B0.17750.74590.25930.079*
H4C0.06440.62480.25280.079*
C50.0410 (2)0.61400 (18)0.09556 (13)0.0506 (5)
H5A0.14700.65450.10130.076*
H5B0.04320.52930.11250.076*
H5C0.03050.61620.04120.076*
C60.3723 (3)0.5458 (2)0.21666 (14)0.0598 (6)
H6A0.48290.51280.21090.090*
H6B0.29490.47890.22240.090*
H6C0.38800.59790.26260.090*
C70.3019 (3)0.5479 (2)0.06956 (14)0.0571 (5)
H7A0.42100.52980.06770.086*
H7B0.25050.59570.02400.086*
H7C0.23860.47170.07010.086*
C80.36190 (18)0.95783 (14)0.09802 (9)0.0276 (3)
C90.52150 (19)1.01413 (14)0.12285 (9)0.0299 (3)
C100.34633 (19)1.13445 (15)0.03893 (10)0.0337 (3)
H10A0.30701.20210.00700.040*
C110.6814 (2)0.98292 (17)0.18240 (11)0.0404 (4)
H11C0.73051.05750.20800.061*
H11D0.76500.94390.15660.061*
H11A0.65150.92730.22100.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01760 (14)0.02601 (15)0.03174 (15)0.00258 (9)0.00206 (10)0.00404 (10)
O10.0231 (5)0.0370 (6)0.0476 (6)0.0047 (4)0.0095 (5)0.0158 (5)
O20.0250 (6)0.0460 (8)0.1147 (13)0.0068 (5)0.0077 (7)0.0061 (8)
O30.0379 (7)0.0565 (8)0.0675 (9)0.0097 (6)0.0138 (6)0.0187 (7)
O40.0414 (8)0.0697 (11)0.1226 (15)0.0215 (8)0.0061 (9)0.0141 (10)
O50.0641 (10)0.0521 (9)0.0981 (13)0.0120 (7)0.0301 (9)0.0232 (8)
N10.0246 (6)0.0287 (6)0.0341 (6)0.0005 (5)0.0043 (5)0.0069 (5)
N20.0255 (6)0.0314 (7)0.0570 (9)0.0015 (5)0.0010 (6)0.0022 (6)
N30.0213 (6)0.0293 (6)0.0349 (7)0.0026 (5)0.0038 (5)0.0022 (5)
N40.0240 (6)0.0355 (7)0.0426 (7)0.0093 (5)0.0065 (5)0.0005 (6)
N50.0339 (7)0.0410 (8)0.0465 (8)0.0070 (6)0.0048 (6)0.0088 (6)
C10.0228 (7)0.0301 (7)0.0335 (7)0.0003 (5)0.0022 (5)0.0008 (6)
C20.0318 (8)0.0281 (7)0.0389 (8)0.0039 (6)0.0026 (6)0.0081 (6)
C30.0334 (8)0.0277 (7)0.0481 (9)0.0001 (6)0.0021 (7)0.0029 (7)
C40.0653 (13)0.0497 (11)0.0470 (10)0.0018 (9)0.0204 (9)0.0140 (8)
C50.0362 (9)0.0387 (9)0.0703 (13)0.0094 (7)0.0052 (8)0.0032 (9)
C60.0520 (12)0.0473 (11)0.0704 (14)0.0064 (9)0.0113 (10)0.0195 (10)
C70.0538 (12)0.0469 (11)0.0690 (14)0.0022 (9)0.0082 (10)0.0133 (10)
C80.0219 (7)0.0289 (7)0.0319 (7)0.0002 (5)0.0048 (5)0.0008 (6)
C90.0226 (7)0.0356 (8)0.0320 (7)0.0013 (6)0.0064 (6)0.0031 (6)
C100.0265 (7)0.0334 (8)0.0408 (8)0.0039 (6)0.0060 (6)0.0049 (6)
C110.0240 (8)0.0500 (10)0.0443 (9)0.0005 (7)0.0004 (7)0.0003 (7)
Geometric parameters (Å, º) top
Ni1—N3i2.0206 (12)C2—C41.525 (3)
Ni1—N32.0206 (12)C2—C31.560 (2)
Ni1—O1i2.0408 (10)C3—C71.525 (3)
Ni1—O12.0408 (10)C3—C61.522 (3)
Ni1—O32.1751 (13)C4—H4A0.9600
Ni1—O3i2.1751 (13)C4—H4B0.9600
O1—N11.3057 (16)C4—H4C0.9600
O2—N21.2733 (18)C5—H5A0.9600
O3—N51.256 (2)C5—H5B0.9600
O4—N51.221 (2)C5—H5C0.9600
O5—N51.246 (2)C6—H6A0.9600
N1—C11.3351 (18)C6—H6B0.9600
N1—C21.4971 (19)C6—H6C0.9600
N2—C11.3603 (19)C7—H7A0.9600
N2—C31.501 (2)C7—H7B0.9600
N3—C101.3073 (19)C7—H7C0.9600
N3—C81.3942 (19)C8—C91.379 (2)
N4—C101.344 (2)C9—C111.493 (2)
N4—C91.364 (2)C10—H10A0.9300
N4—H4D0.8600C11—H11C0.9600
C1—C81.438 (2)C11—H11D0.9600
C2—C51.520 (2)C11—H11A0.9600
N3i—Ni1—N3180.0C7—C3—C6109.94 (17)
N3i—Ni1—O1i88.25 (5)N2—C3—C2101.00 (12)
N3—Ni1—O1i91.75 (5)C7—C3—C2114.39 (14)
N3i—Ni1—O191.75 (5)C6—C3—C2114.66 (16)
N3—Ni1—O188.25 (5)C2—C4—H4A109.5
O1i—Ni1—O1180.00 (4)C2—C4—H4B109.5
N3i—Ni1—O381.15 (5)H4A—C4—H4B109.5
N3—Ni1—O398.85 (5)C2—C4—H4C109.5
O1i—Ni1—O389.55 (5)H4A—C4—H4C109.5
O1—Ni1—O390.45 (5)H4B—C4—H4C109.5
N3i—Ni1—O3i98.85 (5)C2—C5—H5A109.5
N3—Ni1—O3i81.15 (5)C2—C5—H5B109.5
O1i—Ni1—O3i90.45 (5)H5A—C5—H5B109.5
O1—Ni1—O3i89.55 (5)C2—C5—H5C109.5
O3—Ni1—O3i180.00 (6)H5A—C5—H5C109.5
N1—O1—Ni1118.74 (8)H5B—C5—H5C109.5
N5—O3—Ni1139.27 (11)C3—C6—H6A109.5
O1—N1—C1126.13 (13)C3—C6—H6B109.5
O1—N1—C2120.40 (11)H6A—C6—H6B109.5
C1—N1—C2112.98 (12)C3—C6—H6C109.5
O2—N2—C1125.14 (14)H6A—C6—H6C109.5
O2—N2—C3121.44 (13)H6B—C6—H6C109.5
C1—N2—C3112.16 (12)C3—C7—H7A109.5
C10—N3—C8105.61 (12)C3—C7—H7B109.5
C10—N3—Ni1129.94 (11)H7A—C7—H7B109.5
C8—N3—Ni1124.33 (10)C3—C7—H7C109.5
C10—N4—C9109.33 (13)H7A—C7—H7C109.5
C10—N4—H4D125.3H7B—C7—H7C109.5
C9—N4—H4D125.3C9—C8—N3109.59 (13)
O4—N5—O5121.93 (17)C9—C8—C1130.05 (14)
O4—N5—O3120.99 (17)N3—C8—C1120.35 (13)
O5—N5—O3117.07 (15)N4—C9—C8104.39 (13)
N1—C1—N2108.43 (13)N4—C9—C11121.00 (14)
N1—C1—C8125.18 (13)C8—C9—C11134.40 (15)
N2—C1—C8126.34 (13)N3—C10—N4111.07 (14)
N1—C2—C5110.16 (13)N3—C10—H10A124.5
N1—C2—C4105.75 (14)N4—C10—H10A124.5
C5—C2—C4110.14 (16)C9—C11—H11C109.5
N1—C2—C3100.75 (12)C9—C11—H11D109.5
C5—C2—C3115.06 (15)H11C—C11—H11D109.5
C4—C2—C3114.15 (14)C9—C11—H11A109.5
N2—C3—C7105.64 (15)H11C—C11—H11A109.5
N2—C3—C6110.44 (15)H11D—C11—H11A109.5
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Ni(NO3)2(C11H17N4O2)2]
Mr657.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.8313 (5), 10.7772 (8), 17.3009 (12)
β (°) 101.464 (1)
V3)1431.07 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.43 × 0.17 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.741, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
12170, 3280, 2891
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.084, 1.03
No. of reflections3280
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker , 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Natural Science Foundation and Basic Research Program of Henan Province (No. 092300410195 and No. 092300410240).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Z. Y., Guo, H. J. & Zhang, W. B. (2010). Acta Cryst. E66, m19.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, L. C., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2004). Inorg. Chim. Acta, 357, 405–410.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUllman, E. F., Call, L. & Osieckei, J. H. (1970). J. Org. Chem. 35, 3623–3628.  CrossRef CAS Web of Science Google Scholar
First citationUllman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049–7059.  CrossRef CAS Web of Science Google Scholar
First citationWang, Y. F., Wang, L. Y. & Ma, L. F. (2008). J. Mol. Struct. 877, 138–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamoto, Y., Suzuki, T. & Kaizaki, S. (2001). J. Chem. Soc. Dalton Trans. pp. 1566–1572.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds