metal-organic compounds
catena-Poly[[bis(1-ethyl-1H-imidazole-κN3)copper(II)]-μ-oxalato-κ4O1,O2:O1′,O2′]
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn
The title compound, [Cu(C2O4)(C5H8N2)2]n, is composed of one-dimensional linear chains running parallel to the a axis. In the chain, trans-[Cu(imidazole)2]2+ units are sequentially bridged by bis-bidentate oxalate ligands, resulting in an octahedral CuO4N2 donor set. The Cu⋯Cu separation through the oxalate bridge is 5.620 (5) Å. Both the Cu atoms and the C—C bond of the oxalate bridge are bisected by inversion centres.
Related literature
For general background on ferroelectric organic compounds with framework structures, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811043121/bg2425sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811043121/bg2425Isup2.hkl
A mixture of 1-ethyl imidazole (1.9 g, 20 mmol), cupric oxalate (1.5 g, 10 mmol) in water was stirred for several days at ambient temperature; blue block crystals were obtained on standing.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.96 Å, and with Uĩso(H) = 1.2 Uĩso(C) or 1.5 Uĩso(C) for ethy H atoms..
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C2O4)(C5H8N2)2] | F(000) = 354 |
Mr = 343.83 | Dx = 1.594 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1653 reflections |
a = 5.6200 (11) Å | θ = 2.3–27.5° |
b = 8.8577 (18) Å | µ = 1.55 mm−1 |
c = 14.481 (3) Å | T = 293 K |
β = 96.55 (3)° | Block, blue |
V = 716.2 (2) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 2 |
Rigaku SCXmini diffractometer | 1267 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.062 |
Graphite monochromator | θmax = 27.5°, θmin = 3.7° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −11→11 |
Tmin = 0.635, Tmax = 0.734 | l = −18→18 |
7300 measured reflections | 2 standard reflections every 150 reflections |
1653 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0361P)2 + 0.3394P] where P = (Fo2 + 2Fc2)/3 |
1653 reflections | (Δ/σ)max < 0.001 |
98 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
[Cu(C2O4)(C5H8N2)2] | V = 716.2 (2) Å3 |
Mr = 343.83 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.6200 (11) Å | µ = 1.55 mm−1 |
b = 8.8577 (18) Å | T = 293 K |
c = 14.481 (3) Å | 0.30 × 0.25 × 0.20 mm |
β = 96.55 (3)° |
Rigaku SCXmini diffractometer | 1267 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | Rint = 0.062 |
Tmin = 0.635, Tmax = 0.734 | 2 standard reflections every 150 reflections |
7300 measured reflections | intensity decay: none |
1653 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.48 e Å−3 |
1653 reflections | Δρmin = −0.33 e Å−3 |
98 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.5000 | 0.5000 | 0.02341 (16) | |
C1 | 0.0677 (5) | 0.4366 (4) | 0.3025 (2) | 0.0326 (7) | |
H1 | 0.1452 | 0.3463 | 0.3194 | 0.039* | |
C2 | −0.1151 (5) | 0.6469 (4) | 0.3090 (2) | 0.0365 (7) | |
H2 | −0.1900 | 0.7304 | 0.3318 | 0.044* | |
C3 | −0.0853 (6) | 0.6229 (4) | 0.2184 (2) | 0.0397 (8) | |
H3 | −0.1337 | 0.6861 | 0.1685 | 0.048* | |
C4 | 0.1083 (6) | 0.4132 (4) | 0.1331 (2) | 0.0439 (8) | |
H4A | −0.0227 | 0.4136 | 0.0833 | 0.053* | |
H4B | 0.1477 | 0.3088 | 0.1482 | 0.053* | |
C5 | 0.3213 (7) | 0.4885 (4) | 0.0999 (3) | 0.0534 (9) | |
H5A | 0.2801 | 0.5899 | 0.0809 | 0.080* | |
H5B | 0.3701 | 0.4333 | 0.0482 | 0.080* | |
H5C | 0.4505 | 0.4906 | 0.1494 | 0.080* | |
C6 | 0.4839 (4) | 0.4123 (3) | 0.49195 (17) | 0.0210 (5) | |
N1 | −0.0177 (4) | 0.5292 (3) | 0.36168 (15) | 0.0282 (6) | |
N2 | 0.0296 (4) | 0.4876 (3) | 0.21516 (16) | 0.0339 (6) | |
O1 | 0.3372 (3) | 0.6619 (2) | 0.52150 (13) | 0.0291 (5) | |
O2 | 0.2754 (3) | 0.3599 (2) | 0.49398 (12) | 0.0259 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0188 (2) | 0.0301 (3) | 0.0218 (2) | 0.0016 (2) | 0.00409 (16) | −0.0002 (2) |
C1 | 0.0357 (16) | 0.0345 (16) | 0.0279 (16) | 0.0039 (14) | 0.0056 (13) | 0.0016 (13) |
C2 | 0.0367 (16) | 0.0403 (18) | 0.0333 (16) | 0.0065 (14) | 0.0067 (13) | 0.0027 (14) |
C3 | 0.0414 (17) | 0.0478 (19) | 0.0291 (16) | 0.0012 (16) | 0.0010 (13) | 0.0095 (15) |
C4 | 0.050 (2) | 0.056 (2) | 0.0266 (16) | −0.0079 (17) | 0.0082 (14) | −0.0087 (15) |
C5 | 0.063 (2) | 0.050 (2) | 0.052 (2) | −0.0054 (19) | 0.0277 (19) | 0.0000 (18) |
C6 | 0.0211 (12) | 0.0244 (14) | 0.0172 (12) | 0.0034 (12) | 0.0008 (10) | 0.0010 (11) |
N1 | 0.0265 (12) | 0.0336 (15) | 0.0248 (12) | 0.0027 (10) | 0.0048 (10) | 0.0015 (10) |
N2 | 0.0358 (13) | 0.0422 (15) | 0.0238 (12) | −0.0023 (12) | 0.0042 (10) | −0.0010 (11) |
O1 | 0.0235 (9) | 0.0270 (11) | 0.0374 (11) | 0.0020 (8) | 0.0069 (8) | −0.0030 (9) |
O2 | 0.0197 (9) | 0.0269 (10) | 0.0316 (10) | −0.0014 (8) | 0.0054 (8) | −0.0003 (9) |
Cu1—O2 | 1.9935 (18) | C3—H3 | 0.9300 |
Cu1—O2i | 1.9935 (18) | C4—N2 | 1.470 (4) |
Cu1—N1 | 2.011 (2) | C4—C5 | 1.497 (4) |
Cu1—N1i | 2.011 (2) | C4—H4A | 0.9700 |
Cu1—O1i | 2.3684 (18) | C4—H4B | 0.9700 |
Cu1—O1 | 2.3684 (19) | C5—H5A | 0.9600 |
C1—N1 | 1.316 (4) | C5—H5B | 0.9600 |
C1—N2 | 1.337 (4) | C5—H5C | 0.9600 |
C1—H1 | 0.9300 | C6—O1ii | 1.235 (3) |
C2—C3 | 1.359 (4) | C6—O2 | 1.264 (3) |
C2—N1 | 1.368 (4) | C6—C6ii | 1.579 (5) |
C2—H2 | 0.9300 | O1—C6ii | 1.235 (3) |
C3—N2 | 1.365 (4) | ||
O2—Cu1—O2i | 180.000 (1) | N2—C4—C5 | 112.7 (3) |
O2—Cu1—N1 | 89.27 (8) | N2—C4—H4A | 109.1 |
O2i—Cu1—N1 | 90.73 (8) | C5—C4—H4A | 109.1 |
O2—Cu1—N1i | 90.73 (8) | N2—C4—H4B | 109.1 |
O2i—Cu1—N1i | 89.27 (8) | C5—C4—H4B | 109.1 |
N1—Cu1—N1i | 180.000 (1) | H4A—C4—H4B | 107.8 |
O2—Cu1—O1i | 103.35 (7) | C4—C5—H5A | 109.5 |
O2i—Cu1—O1i | 76.65 (7) | C4—C5—H5B | 109.5 |
N1—Cu1—O1i | 89.94 (8) | H5A—C5—H5B | 109.5 |
N1i—Cu1—O1i | 90.06 (8) | C4—C5—H5C | 109.5 |
O2—Cu1—O1 | 76.65 (7) | H5A—C5—H5C | 109.5 |
O2i—Cu1—O1 | 103.35 (7) | H5B—C5—H5C | 109.5 |
N1—Cu1—O1 | 90.06 (8) | O1ii—C6—O2 | 125.6 (2) |
N1i—Cu1—O1 | 89.94 (8) | O1ii—C6—C6ii | 117.7 (3) |
O1i—Cu1—O1 | 180.00 (7) | O2—C6—C6ii | 116.7 (3) |
N1—C1—N2 | 112.0 (3) | C1—N1—C2 | 105.3 (2) |
N1—C1—H1 | 124.0 | C1—N1—Cu1 | 126.0 (2) |
N2—C1—H1 | 124.0 | C2—N1—Cu1 | 128.6 (2) |
C3—C2—N1 | 109.5 (3) | C1—N2—C3 | 106.8 (2) |
C3—C2—H2 | 125.2 | C1—N2—C4 | 125.6 (3) |
N1—C2—H2 | 125.2 | C3—N2—C4 | 127.5 (3) |
C2—C3—N2 | 106.3 (3) | C6ii—O1—Cu1 | 108.12 (16) |
C2—C3—H3 | 126.8 | C6—O2—Cu1 | 119.93 (16) |
N2—C3—H3 | 126.8 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2O4)(C5H8N2)2] |
Mr | 343.83 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 5.6200 (11), 8.8577 (18), 14.481 (3) |
β (°) | 96.55 (3) |
V (Å3) | 716.2 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.55 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.635, 0.734 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7300, 1653, 1267 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.092, 1.05 |
No. of reflections | 1653 |
No. of parameters | 98 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.33 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by Southeast University.
References
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing study of potential ferroelectric materials we have determined the structure of the present copper complex and examined its dielectric behaviour with temperature. This is the usual method for detecting these materials (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). Unfortunately, the dielectric constant for the title compound, Cu[C5H8N]2C2O4, (I) does not show any behavior indicating the onset of a ferroelectric phase change over the range 80 K to 298 K (m.p.319–329).
The Cu atoms are located on crystallographic inversion centers, and are coordinated to four oxygen atoms of two bridging oxalato ligands, also bisected by inversion centres, and two endocyclic nitrogen atoms from two crystallograhically related imidazole molecules, resulting in octahedral MO4N2 donor sets. Fig. 2 suggests the way in which oxalato-bridged chains build up. The Cu — Cu intrachain separation is 5.620 (5) Å.