organic compounds
C—H⋯π packing interactions in 2-[5,5-bis(4-benzyloxyphenyl)-3-cyano-4-methyl-2,5-dihydrofuran-2-ylidene]malononitrile
aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz
The title molecule, C35H25N3O3, packs utilizing C—H⋯π attractive interactions causing the identical 4-benzyloxyphenyl groups to pack with different conformational angles. This difference is consistent with the variable interplanar dihedral angles found in closely related structures.
Related literature
For general background, see: Smith et al. (2006, 2010); Teshome et al. (2009); Datta & Pati (2003). For related structures, see: Li et al. (2005); Nikitin et al. (2010); Roesky et al. (1997); Wang et al. (2007); Gainsford et al. (2008). For synthesis details, see: Anderson (2009). For C—H⋯π bonding, see: Desiraju & Steiner (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811043480/bg2427sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811043480/bg2427Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811043480/bg2427Isup3.cml
Compound(I) was prepared by the condensation of 1,1-bis(4-(benzyloxy)phenyl)-1-hydroxypropan-2-one with 4 equivalents of malononitrile over 10 days as described in Anderson (2009). Crystals were obtained from a 1:1 dichloromethane:acetone mixture.
Five reflections affected by the backstop and 6 others which were clearly outlier data (also at low angle) were omitted from the refinements (using OMIT). The methyl and other H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom. All H atoms bound to carbon were constrained to their expected geometries (C—H 0.95, 0.98 & 0.99 Å).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT and SADABS (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level. | |
Fig. 2. Packing diagram [Mercury, Macrae et al.,(2008)] of the unit cell. Non-hydrogen atoms, ring centroids (Cg) and H atoms involved in C–H···π bonding shown as balls: two close contacts indicated by dotted lines identify the bonds (see text). Symmetry (i) 1 - x, 1 - y, 1 - z (ii) x, 1.5 - y, 1/2 + z (iii) 1 - x, y - 1/2, 1/2 - z. |
C35H25N3O3 | F(000) = 1120 |
Mr = 535.58 | Dx = 1.263 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7358 reflections |
a = 18.1696 (8) Å | θ = 2.3–26.7° |
b = 10.0728 (5) Å | µ = 0.08 mm−1 |
c = 15.8413 (7) Å | T = 123 K |
β = 103.779 (3)° | Triangular, pink |
V = 2815.8 (2) Å3 | 0.35 × 0.21 × 0.09 mm |
Z = 4 |
Bruker–Nonius APEXII CCD area-detector diffractometer | 7017 independent reflections |
Radiation source: fine-focus sealed tube | 4764 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.073 |
Detector resolution: 8.333 pixels mm-1 | θmax = 28.5°, θmin = 2.6° |
ϕ and ω scans | h = −24→24 |
Absorption correction: multi-scan (Software?; Blessing, 1995) | k = −13→13 |
Tmin = 0.664, Tmax = 0.746 | l = −21→21 |
62528 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0408P)2 + 0.6136P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
7017 reflections | Δρmax = 0.26 e Å−3 |
372 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0023 (5) |
C35H25N3O3 | V = 2815.8 (2) Å3 |
Mr = 535.58 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 18.1696 (8) Å | µ = 0.08 mm−1 |
b = 10.0728 (5) Å | T = 123 K |
c = 15.8413 (7) Å | 0.35 × 0.21 × 0.09 mm |
β = 103.779 (3)° |
Bruker–Nonius APEXII CCD area-detector diffractometer | 7017 independent reflections |
Absorption correction: multi-scan (Software?; Blessing, 1995) | 4764 reflections with I > 2σ(I) |
Tmin = 0.664, Tmax = 0.746 | Rint = 0.073 |
62528 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.26 e Å−3 |
7017 reflections | Δρmin = −0.19 e Å−3 |
372 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.12002 (5) | 0.68767 (10) | 0.34643 (6) | 0.0281 (2) | |
O2 | 0.39969 (6) | 0.75816 (11) | 0.64285 (6) | 0.0345 (3) | |
O3 | 0.25635 (6) | 0.44822 (11) | 0.04549 (6) | 0.0378 (3) | |
N1 | −0.12627 (9) | 0.69465 (18) | 0.39894 (12) | 0.0612 (5) | |
N2 | 0.02878 (9) | 0.99105 (17) | 0.32599 (10) | 0.0516 (4) | |
N3 | −0.05524 (8) | 0.37366 (16) | 0.41384 (10) | 0.0507 (4) | |
C1 | −0.07014 (10) | 0.71929 (18) | 0.38148 (11) | 0.0423 (4) | |
C2 | 0.00032 (8) | 0.74932 (16) | 0.36127 (9) | 0.0325 (3) | |
C3 | 0.01570 (9) | 0.88387 (18) | 0.34204 (10) | 0.0374 (4) | |
C4 | 0.12121 (8) | 0.46134 (15) | 0.37889 (9) | 0.0279 (3) | |
C5 | 0.17157 (8) | 0.57042 (14) | 0.35864 (9) | 0.0259 (3) | |
C6 | 0.05397 (8) | 0.65399 (15) | 0.36280 (9) | 0.0277 (3) | |
C7 | 0.05349 (8) | 0.51294 (15) | 0.38106 (9) | 0.0285 (3) | |
C8 | −0.00822 (9) | 0.43825 (16) | 0.39840 (10) | 0.0350 (4) | |
C9 | 0.14590 (10) | 0.32107 (15) | 0.39324 (11) | 0.0385 (4) | |
H9A | 0.1042 | 0.2675 | 0.4045 | 0.058* | |
H9B | 0.1895 | 0.3157 | 0.4433 | 0.058* | |
H9C | 0.1603 | 0.2873 | 0.3414 | 0.058* | |
C10 | 0.23631 (8) | 0.60639 (14) | 0.43524 (9) | 0.0256 (3) | |
C11 | 0.30259 (8) | 0.66571 (15) | 0.42418 (9) | 0.0290 (3) | |
H11 | 0.3107 | 0.6735 | 0.3673 | 0.035* | |
C12 | 0.35666 (8) | 0.71334 (15) | 0.49400 (9) | 0.0305 (3) | |
H12 | 0.4020 | 0.7517 | 0.4852 | 0.037* | |
C13 | 0.34456 (8) | 0.70514 (15) | 0.57738 (9) | 0.0290 (3) | |
C14 | 0.27911 (8) | 0.64498 (15) | 0.58974 (9) | 0.0306 (3) | |
H14 | 0.2708 | 0.6379 | 0.6465 | 0.037* | |
C15 | 0.22617 (8) | 0.59547 (15) | 0.51933 (9) | 0.0293 (3) | |
H15 | 0.1820 | 0.5531 | 0.5285 | 0.035* | |
C16 | 0.38713 (9) | 0.74530 (18) | 0.72893 (9) | 0.0399 (4) | |
H16A | 0.3792 | 0.6507 | 0.7413 | 0.048* | |
H16B | 0.3410 | 0.7951 | 0.7326 | 0.048* | |
C17 | 0.45409 (9) | 0.79826 (16) | 0.79476 (9) | 0.0332 (4) | |
C18 | 0.51398 (10) | 0.71623 (18) | 0.83300 (10) | 0.0405 (4) | |
H18 | 0.5142 | 0.6262 | 0.8152 | 0.049* | |
C19 | 0.57374 (10) | 0.76491 (19) | 0.89730 (11) | 0.0444 (4) | |
H19 | 0.6151 | 0.7087 | 0.9226 | 0.053* | |
C20 | 0.57305 (10) | 0.89412 (19) | 0.92428 (11) | 0.0432 (4) | |
H20 | 0.6135 | 0.9268 | 0.9690 | 0.052* | |
C21 | 0.51405 (9) | 0.97639 (19) | 0.88694 (11) | 0.0441 (4) | |
H21 | 0.5137 | 1.0660 | 0.9055 | 0.053* | |
C22 | 0.45512 (9) | 0.92836 (17) | 0.82220 (11) | 0.0386 (4) | |
H22 | 0.4146 | 0.9859 | 0.7962 | 0.046* | |
C23 | 0.19339 (8) | 0.54421 (14) | 0.27323 (9) | 0.0258 (3) | |
C24 | 0.15600 (8) | 0.60416 (15) | 0.19629 (9) | 0.0285 (3) | |
H24 | 0.1167 | 0.6662 | 0.1968 | 0.034* | |
C25 | 0.17488 (8) | 0.57509 (15) | 0.11830 (9) | 0.0305 (3) | |
H25 | 0.1488 | 0.6172 | 0.0661 | 0.037* | |
C26 | 0.23175 (8) | 0.48458 (15) | 0.11714 (9) | 0.0288 (3) | |
C27 | 0.26916 (8) | 0.42278 (15) | 0.19397 (9) | 0.0306 (3) | |
H27 | 0.3078 | 0.3596 | 0.1932 | 0.037* | |
C28 | 0.25050 (8) | 0.45259 (15) | 0.27101 (9) | 0.0292 (3) | |
H28 | 0.2767 | 0.4104 | 0.3232 | 0.035* | |
C29 | 0.22598 (9) | 0.51569 (16) | −0.03469 (9) | 0.0341 (4) | |
H29A | 0.2287 | 0.6130 | −0.0258 | 0.041* | |
H29B | 0.1723 | 0.4905 | −0.0581 | 0.041* | |
C30 | 0.27319 (10) | 0.47451 (15) | −0.09672 (10) | 0.0356 (4) | |
C31 | 0.35127 (10) | 0.46188 (17) | −0.06759 (11) | 0.0431 (4) | |
H31 | 0.3750 | 0.4812 | −0.0087 | 0.052* | |
C32 | 0.39502 (12) | 0.42104 (19) | −0.12404 (13) | 0.0551 (5) | |
H32 | 0.4483 | 0.4109 | −0.1035 | 0.066* | |
C33 | 0.36105 (14) | 0.39554 (19) | −0.20918 (14) | 0.0607 (6) | |
H33 | 0.3909 | 0.3671 | −0.2476 | 0.073* | |
C34 | 0.28422 (15) | 0.41071 (18) | −0.23958 (12) | 0.0569 (6) | |
H34 | 0.2612 | 0.3942 | −0.2991 | 0.068* | |
C35 | 0.23988 (12) | 0.45034 (16) | −0.18336 (10) | 0.0447 (4) | |
H35 | 0.1867 | 0.4608 | −0.2046 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0257 (5) | 0.0299 (6) | 0.0299 (5) | 0.0039 (4) | 0.0088 (4) | 0.0006 (4) |
O2 | 0.0341 (6) | 0.0465 (7) | 0.0231 (5) | −0.0072 (5) | 0.0073 (4) | −0.0020 (5) |
O3 | 0.0513 (7) | 0.0409 (6) | 0.0252 (5) | 0.0108 (5) | 0.0173 (5) | 0.0047 (5) |
N1 | 0.0379 (9) | 0.0759 (12) | 0.0742 (12) | 0.0119 (8) | 0.0223 (8) | 0.0099 (10) |
N2 | 0.0505 (10) | 0.0466 (10) | 0.0561 (10) | 0.0130 (8) | 0.0097 (8) | 0.0069 (8) |
N3 | 0.0436 (9) | 0.0545 (10) | 0.0581 (10) | −0.0150 (7) | 0.0205 (8) | −0.0137 (8) |
C1 | 0.0325 (9) | 0.0510 (11) | 0.0433 (10) | 0.0102 (8) | 0.0092 (8) | 0.0017 (8) |
C2 | 0.0268 (8) | 0.0419 (9) | 0.0285 (8) | 0.0048 (7) | 0.0058 (6) | −0.0011 (7) |
C3 | 0.0327 (9) | 0.0458 (11) | 0.0328 (8) | 0.0135 (8) | 0.0061 (7) | 0.0010 (8) |
C4 | 0.0312 (8) | 0.0313 (8) | 0.0221 (7) | −0.0023 (6) | 0.0080 (6) | −0.0032 (6) |
C5 | 0.0253 (7) | 0.0266 (7) | 0.0262 (7) | 0.0045 (6) | 0.0072 (6) | 0.0011 (6) |
C6 | 0.0236 (7) | 0.0390 (9) | 0.0199 (7) | 0.0000 (6) | 0.0039 (6) | −0.0036 (6) |
C7 | 0.0277 (8) | 0.0344 (8) | 0.0239 (7) | −0.0037 (6) | 0.0075 (6) | −0.0051 (6) |
C8 | 0.0317 (8) | 0.0403 (9) | 0.0340 (8) | −0.0057 (7) | 0.0098 (7) | −0.0103 (7) |
C9 | 0.0450 (10) | 0.0301 (9) | 0.0446 (9) | −0.0006 (7) | 0.0187 (8) | −0.0012 (7) |
C10 | 0.0270 (7) | 0.0257 (7) | 0.0247 (7) | 0.0038 (6) | 0.0072 (6) | 0.0010 (6) |
C11 | 0.0308 (8) | 0.0346 (8) | 0.0236 (7) | 0.0013 (6) | 0.0102 (6) | 0.0019 (6) |
C12 | 0.0285 (8) | 0.0364 (9) | 0.0281 (8) | −0.0019 (6) | 0.0095 (6) | 0.0020 (6) |
C13 | 0.0297 (8) | 0.0311 (8) | 0.0254 (7) | 0.0010 (6) | 0.0049 (6) | −0.0010 (6) |
C14 | 0.0338 (8) | 0.0364 (8) | 0.0236 (7) | −0.0007 (7) | 0.0110 (6) | 0.0011 (6) |
C15 | 0.0298 (8) | 0.0334 (8) | 0.0266 (7) | −0.0014 (6) | 0.0104 (6) | 0.0013 (6) |
C16 | 0.0417 (9) | 0.0539 (11) | 0.0251 (8) | −0.0118 (8) | 0.0099 (7) | −0.0017 (7) |
C17 | 0.0340 (8) | 0.0436 (9) | 0.0236 (7) | −0.0051 (7) | 0.0096 (6) | 0.0020 (7) |
C18 | 0.0475 (10) | 0.0412 (10) | 0.0345 (9) | −0.0012 (8) | 0.0129 (8) | −0.0008 (7) |
C19 | 0.0405 (10) | 0.0561 (12) | 0.0355 (9) | 0.0050 (8) | 0.0069 (8) | 0.0136 (8) |
C20 | 0.0382 (9) | 0.0602 (12) | 0.0299 (8) | −0.0104 (8) | 0.0053 (7) | −0.0005 (8) |
C21 | 0.0400 (10) | 0.0454 (10) | 0.0468 (10) | −0.0088 (8) | 0.0105 (8) | −0.0091 (8) |
C22 | 0.0315 (8) | 0.0429 (10) | 0.0407 (9) | −0.0007 (7) | 0.0074 (7) | 0.0038 (7) |
C23 | 0.0243 (7) | 0.0286 (8) | 0.0252 (7) | −0.0011 (6) | 0.0072 (6) | −0.0012 (6) |
C24 | 0.0276 (7) | 0.0307 (8) | 0.0277 (7) | 0.0032 (6) | 0.0077 (6) | 0.0014 (6) |
C25 | 0.0331 (8) | 0.0342 (8) | 0.0237 (7) | 0.0024 (7) | 0.0058 (6) | 0.0047 (6) |
C26 | 0.0342 (8) | 0.0292 (8) | 0.0252 (7) | −0.0016 (6) | 0.0115 (6) | −0.0008 (6) |
C27 | 0.0319 (8) | 0.0306 (8) | 0.0308 (8) | 0.0046 (6) | 0.0104 (6) | 0.0003 (6) |
C28 | 0.0298 (8) | 0.0325 (8) | 0.0254 (7) | 0.0035 (6) | 0.0069 (6) | 0.0025 (6) |
C29 | 0.0451 (9) | 0.0335 (9) | 0.0242 (7) | −0.0003 (7) | 0.0090 (7) | 0.0017 (6) |
C30 | 0.0560 (11) | 0.0253 (8) | 0.0284 (8) | −0.0037 (7) | 0.0157 (7) | 0.0010 (6) |
C31 | 0.0571 (11) | 0.0409 (10) | 0.0354 (9) | 0.0058 (8) | 0.0189 (8) | 0.0040 (7) |
C32 | 0.0688 (13) | 0.0478 (11) | 0.0602 (13) | 0.0076 (10) | 0.0379 (11) | 0.0078 (9) |
C33 | 0.0989 (18) | 0.0425 (11) | 0.0569 (13) | −0.0029 (11) | 0.0507 (13) | −0.0045 (9) |
C34 | 0.1087 (18) | 0.0387 (10) | 0.0301 (9) | −0.0159 (11) | 0.0301 (11) | −0.0068 (8) |
C35 | 0.0714 (13) | 0.0338 (9) | 0.0304 (8) | −0.0126 (8) | 0.0150 (8) | −0.0014 (7) |
O1—C6 | 1.3307 (16) | C17—C22 | 1.379 (2) |
O1—C5 | 1.4911 (16) | C17—C18 | 1.386 (2) |
O2—C13 | 1.3673 (17) | C18—C19 | 1.389 (2) |
O2—C16 | 1.4410 (17) | C18—H18 | 0.9500 |
O3—C26 | 1.3654 (16) | C19—C20 | 1.371 (3) |
O3—C29 | 1.4303 (17) | C19—H19 | 0.9500 |
N1—C1 | 1.146 (2) | C20—C21 | 1.372 (2) |
N2—C3 | 1.147 (2) | C20—H20 | 0.9500 |
N3—C8 | 1.146 (2) | C21—C22 | 1.382 (2) |
C1—C2 | 1.424 (2) | C21—H21 | 0.9500 |
C2—C6 | 1.364 (2) | C22—H22 | 0.9500 |
C2—C3 | 1.431 (2) | C23—C24 | 1.385 (2) |
C4—C7 | 1.344 (2) | C23—C28 | 1.395 (2) |
C4—C9 | 1.484 (2) | C24—C25 | 1.3899 (19) |
C4—C5 | 1.512 (2) | C24—H24 | 0.9500 |
C5—C10 | 1.5190 (19) | C25—C26 | 1.381 (2) |
C5—C23 | 1.5208 (19) | C25—H25 | 0.9500 |
C6—C7 | 1.450 (2) | C26—C27 | 1.392 (2) |
C7—C8 | 1.430 (2) | C27—C28 | 1.3755 (19) |
C9—H9A | 0.9800 | C27—H27 | 0.9500 |
C9—H9B | 0.9800 | C28—H28 | 0.9500 |
C9—H9C | 0.9800 | C29—C30 | 1.508 (2) |
C10—C15 | 1.3919 (19) | C29—H29A | 0.9900 |
C10—C11 | 1.392 (2) | C29—H29B | 0.9900 |
C11—C12 | 1.379 (2) | C30—C35 | 1.383 (2) |
C11—H11 | 0.9500 | C30—C31 | 1.389 (2) |
C12—C13 | 1.3921 (19) | C31—C32 | 1.393 (2) |
C12—H12 | 0.9500 | C31—H31 | 0.9500 |
C13—C14 | 1.390 (2) | C32—C33 | 1.367 (3) |
C14—C15 | 1.381 (2) | C32—H32 | 0.9500 |
C14—H14 | 0.9500 | C33—C34 | 1.372 (3) |
C15—H15 | 0.9500 | C33—H33 | 0.9500 |
C16—C17 | 1.499 (2) | C34—C35 | 1.394 (3) |
C16—H16A | 0.9900 | C34—H34 | 0.9500 |
C16—H16B | 0.9900 | C35—H35 | 0.9500 |
C6—O1—C5 | 109.92 (11) | C17—C18—C19 | 120.35 (17) |
C13—O2—C16 | 115.48 (11) | C17—C18—H18 | 119.8 |
C26—O3—C29 | 118.50 (12) | C19—C18—H18 | 119.8 |
N1—C1—C2 | 179.0 (2) | C20—C19—C18 | 120.00 (16) |
C6—C2—C1 | 121.55 (15) | C20—C19—H19 | 120.0 |
C6—C2—C3 | 119.70 (14) | C18—C19—H19 | 120.0 |
C1—C2—C3 | 118.72 (14) | C19—C20—C21 | 120.21 (16) |
N2—C3—C2 | 179.00 (18) | C19—C20—H20 | 119.9 |
C7—C4—C9 | 127.58 (14) | C21—C20—H20 | 119.9 |
C7—C4—C5 | 109.18 (13) | C20—C21—C22 | 119.74 (17) |
C9—C4—C5 | 123.24 (13) | C20—C21—H21 | 120.1 |
O1—C5—C4 | 102.11 (10) | C22—C21—H21 | 120.1 |
O1—C5—C10 | 104.93 (11) | C17—C22—C21 | 121.10 (16) |
C4—C5—C10 | 113.35 (11) | C17—C22—H22 | 119.5 |
O1—C5—C23 | 108.11 (11) | C21—C22—H22 | 119.5 |
C4—C5—C23 | 111.21 (11) | C24—C23—C28 | 118.56 (13) |
C10—C5—C23 | 115.83 (11) | C24—C23—C5 | 122.02 (12) |
O1—C6—C2 | 119.39 (14) | C28—C23—C5 | 119.36 (12) |
O1—C6—C7 | 109.70 (12) | C23—C24—C25 | 121.15 (13) |
C2—C6—C7 | 130.90 (14) | C23—C24—H24 | 119.4 |
C4—C7—C8 | 124.47 (14) | C25—C24—H24 | 119.4 |
C4—C7—C6 | 108.95 (13) | C26—C25—C24 | 119.65 (13) |
C8—C7—C6 | 126.57 (13) | C26—C25—H25 | 120.2 |
N3—C8—C7 | 176.72 (19) | C24—C25—H25 | 120.2 |
C4—C9—H9A | 109.5 | O3—C26—C25 | 125.61 (13) |
C4—C9—H9B | 109.5 | O3—C26—C27 | 114.74 (13) |
H9A—C9—H9B | 109.5 | C25—C26—C27 | 119.65 (13) |
C4—C9—H9C | 109.5 | C28—C27—C26 | 120.39 (14) |
H9A—C9—H9C | 109.5 | C28—C27—H27 | 119.8 |
H9B—C9—H9C | 109.5 | C26—C27—H27 | 119.8 |
C15—C10—C11 | 118.03 (13) | C27—C28—C23 | 120.59 (13) |
C15—C10—C5 | 119.46 (12) | C27—C28—H28 | 119.7 |
C11—C10—C5 | 122.02 (12) | C23—C28—H28 | 119.7 |
C12—C11—C10 | 121.38 (13) | O3—C29—C30 | 106.78 (13) |
C12—C11—H11 | 119.3 | O3—C29—H29A | 110.4 |
C10—C11—H11 | 119.3 | C30—C29—H29A | 110.4 |
C11—C12—C13 | 119.81 (13) | O3—C29—H29B | 110.4 |
C11—C12—H12 | 120.1 | C30—C29—H29B | 110.4 |
C13—C12—H12 | 120.1 | H29A—C29—H29B | 108.6 |
O2—C13—C14 | 124.09 (13) | C35—C30—C31 | 118.96 (16) |
O2—C13—C12 | 116.35 (13) | C35—C30—C29 | 120.83 (16) |
C14—C13—C12 | 119.56 (13) | C31—C30—C29 | 120.20 (14) |
C15—C14—C13 | 119.91 (13) | C30—C31—C32 | 120.51 (17) |
C15—C14—H14 | 120.0 | C30—C31—H31 | 119.7 |
C13—C14—H14 | 120.0 | C32—C31—H31 | 119.7 |
C14—C15—C10 | 121.27 (13) | C33—C32—C31 | 119.8 (2) |
C14—C15—H15 | 119.4 | C33—C32—H32 | 120.1 |
C10—C15—H15 | 119.4 | C31—C32—H32 | 120.1 |
O2—C16—C17 | 109.94 (12) | C32—C33—C34 | 120.51 (18) |
O2—C16—H16A | 109.7 | C32—C33—H33 | 119.7 |
C17—C16—H16A | 109.7 | C34—C33—H33 | 119.7 |
O2—C16—H16B | 109.7 | C33—C34—C35 | 120.14 (18) |
C17—C16—H16B | 109.7 | C33—C34—H34 | 119.9 |
H16A—C16—H16B | 108.2 | C35—C34—H34 | 119.9 |
C22—C17—C18 | 118.58 (15) | C30—C35—C34 | 120.09 (19) |
C22—C17—C16 | 120.34 (15) | C30—C35—H35 | 120.0 |
C18—C17—C16 | 120.97 (16) | C34—C35—H35 | 120.0 |
C6—O1—C5—C4 | 3.74 (14) | C13—O2—C16—C17 | 175.86 (13) |
C6—O1—C5—C10 | −114.73 (12) | O2—C16—C17—C22 | 93.34 (17) |
C6—O1—C5—C23 | 121.10 (12) | O2—C16—C17—C18 | −90.50 (18) |
C7—C4—C5—O1 | −2.30 (14) | C22—C17—C18—C19 | −0.3 (2) |
C9—C4—C5—O1 | 177.55 (13) | C16—C17—C18—C19 | −176.51 (14) |
C7—C4—C5—C10 | 110.01 (13) | C17—C18—C19—C20 | 1.1 (2) |
C9—C4—C5—C10 | −70.14 (17) | C18—C19—C20—C21 | −1.1 (2) |
C7—C4—C5—C23 | −117.41 (13) | C19—C20—C21—C22 | 0.2 (3) |
C9—C4—C5—C23 | 62.44 (18) | C18—C17—C22—C21 | −0.6 (2) |
C5—O1—C6—C2 | 175.49 (12) | C16—C17—C22—C21 | 175.68 (15) |
C5—O1—C6—C7 | −3.83 (15) | C20—C21—C22—C17 | 0.6 (2) |
C1—C2—C6—O1 | −177.65 (13) | O1—C5—C23—C24 | −12.82 (18) |
C3—C2—C6—O1 | 0.1 (2) | C4—C5—C23—C24 | 98.50 (16) |
C1—C2—C6—C7 | 1.5 (3) | C10—C5—C23—C24 | −130.18 (14) |
C3—C2—C6—C7 | 179.23 (14) | O1—C5—C23—C28 | 170.13 (12) |
C9—C4—C7—C8 | 0.1 (2) | C4—C5—C23—C28 | −78.55 (16) |
C5—C4—C7—C8 | 179.99 (13) | C10—C5—C23—C28 | 52.77 (18) |
C9—C4—C7—C6 | −179.62 (14) | C28—C23—C24—C25 | −0.5 (2) |
C5—C4—C7—C6 | 0.22 (16) | C5—C23—C24—C25 | −177.53 (13) |
O1—C6—C7—C4 | 2.29 (16) | C23—C24—C25—C26 | 0.2 (2) |
C2—C6—C7—C4 | −176.92 (15) | C29—O3—C26—C25 | 5.4 (2) |
O1—C6—C7—C8 | −177.47 (13) | C29—O3—C26—C27 | −174.32 (13) |
C2—C6—C7—C8 | 3.3 (3) | C24—C25—C26—O3 | −179.27 (14) |
O1—C5—C10—C15 | 78.88 (15) | C24—C25—C26—C27 | 0.4 (2) |
C4—C5—C10—C15 | −31.71 (18) | O3—C26—C27—C28 | 178.91 (13) |
C23—C5—C10—C15 | −162.01 (13) | C25—C26—C27—C28 | −0.8 (2) |
O1—C5—C10—C11 | −92.98 (15) | C26—C27—C28—C23 | 0.6 (2) |
C4—C5—C10—C11 | 156.44 (13) | C24—C23—C28—C27 | 0.1 (2) |
C23—C5—C10—C11 | 26.14 (19) | C5—C23—C28—C27 | 177.22 (13) |
C15—C10—C11—C12 | −0.4 (2) | C26—O3—C29—C30 | 169.49 (12) |
C5—C10—C11—C12 | 171.53 (13) | O3—C29—C30—C35 | 140.52 (14) |
C10—C11—C12—C13 | −1.5 (2) | O3—C29—C30—C31 | −40.28 (19) |
C16—O2—C13—C14 | 1.5 (2) | C35—C30—C31—C32 | −2.2 (2) |
C16—O2—C13—C12 | −178.30 (14) | C29—C30—C31—C32 | 178.57 (15) |
C11—C12—C13—O2 | −178.06 (13) | C30—C31—C32—C33 | 1.2 (3) |
C11—C12—C13—C14 | 2.1 (2) | C31—C32—C33—C34 | 0.4 (3) |
O2—C13—C14—C15 | 179.31 (14) | C32—C33—C34—C35 | −1.0 (3) |
C12—C13—C14—C15 | −0.9 (2) | C31—C30—C35—C34 | 1.6 (2) |
C13—C14—C15—C10 | −1.1 (2) | C29—C30—C35—C34 | −179.18 (15) |
C11—C10—C15—C14 | 1.7 (2) | C33—C34—C35—C30 | 0.0 (3) |
C5—C10—C15—C14 | −170.48 (13) |
Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 and C23–C28, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20···Cg1i | 0.95 | 2.85 | 3.596 (2) | 136 |
C29—-H29A···Cg1ii | 0.99 | 2.59 | 3.5276 (17) | 158 |
C33—-H33···Cg2iii | 0.95 | 2.77 | 3.697 (3) | 167 |
C16—-H16B···Cg3iv | 0.99 | 2.97 | 3.9262 (18) | 162 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z−3/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C35H25N3O3 |
Mr | 535.58 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 18.1696 (8), 10.0728 (5), 15.8413 (7) |
β (°) | 103.779 (3) |
V (Å3) | 2815.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.35 × 0.21 × 0.09 |
Data collection | |
Diffractometer | Bruker–Nonius APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (Software?; Blessing, 1995) |
Tmin, Tmax | 0.664, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 62528, 7017, 4764 |
Rint | 0.073 |
(sin θ/λ)max (Å−1) | 0.671 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.115, 1.05 |
No. of reflections | 7017 |
No. of parameters | 372 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.19 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT and SADABS (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 and C23–C28, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20···Cg1i | 0.95 | 2.85 | 3.596 (2) | 136 |
C29—-H29A···Cg1ii | 0.99 | 2.59 | 3.5276 (17) | 158 |
C33—-H33···Cg2iii | 0.95 | 2.77 | 3.697 (3) | 167 |
C16—-H16B···Cg3iv | 0.99 | 2.97 | 3.9262 (18) | 162 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z−3/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2. |
Acknowledgements
The authors thank Drs J. Wikaira and C. Fitchett of the University of Canterbury for their assistance in data collection.
References
Anderson, J. (2009). BSc (Hons) project report. Victoria University of Wellington, New Zealand. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Datta, A. & Pati, S. K. (2003). J. Chem. Phys. 118, 8420–8427. Web of Science CrossRef CAS Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–21. New York: Oxford University Press Inc. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093–o2095. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nikitin, N., Ortin, Y., Muller-Bunz, H., Plamont, M.-A., Jaouen, G., Vessieres, A. & McGlinchey, M. J. (2010). J. Organomet. Chem. 695, 595–608. Web of Science CSD CrossRef CAS Google Scholar
Roesky, C. E. O., Czugler, M. & Weber, E. (1997). Z. Kristallogr. New Cryst. Struct. 212, 327–328. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. J., Dunford, C. L., Kay, A. J. & Woolhouse, A. D. (2006). J. Photochem. Photobiol. A, 179, 237–242. Web of Science CrossRef CAS Google Scholar
Smith, G. J., Middleton, A., Clarke, D. J., Bhuiyan, M. D. H. & Jay, A. J. (2010). Opt. Mater. 32, 1237–1243. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teshome, A., Kay, A. J., Woolhouse, A. D., Clays, K., Asselberghs, I. & Smith, G. J. (2009). Opt. Mater. 31, 575–582. Web of Science CrossRef CAS Google Scholar
Wang, G.-W., Wu, W.-Y. & Wang, J.-T. (2007). Acta Cryst. E63, o3726. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
New electro-optic modulators will be key components for high capacity transmissions in the telecommunications industry. Organic nonlinear optical (NLO) chromophores appear to offer a very attractive alternative to currently used inorganic materials (e.g. LiNbO3) as they have a much faster response times, are easer to prepare, have low drive voltages and low signal losses. However, issues of aggregation, photochemical & thermal stability are proving significant barriers to the successful uptake of organic NLO materials. A considerable effort has been made over the last two decades to develop organic chromophores with the largest possible NLO response. Due to their dipolar nature, strong electrostatic interactions are possible between individual NLO chromophore molecules which leads to a significant tendency to aggregate (Smith et al., 2006; Datta & Pati, 2003; Teshome et al., 2009). Therefore, much effort has been expended developing methods to minimize aggregation between NLO chromophores(Smith et al., 2010).
One of the most successful strategies to minimize aggregation has been to add bulky pendant groups onto the chromophores. If the pendant groups are aromatic in nature, stacking interactions between the aromatic rings may result, which can overcome the dipole-dipole interactions that cause aggregation (Smith et al., 2010). We have synthesized a new acceptor (the title compound) with bulky groups to reduce aggregation as well as reduce, or even eliminate rotation around the conjugated polyene bridge - acceptor bond.
The asymmetric unit contents of the title compound(I) are shown in Figure 1. The 5-membered ring plane of atoms O1,C4—C7 (hereafter "CDFP", [3-cyano-5,5-dimethyl-2,5-dihydrofuran-2-ylidene]propanedinitrile) can be regarded as planar with maximum out of plane deviation for O1 of 0.023 (1) Å. The dicyano group (N1,C1,C2,C3,N2,C6) is planar but twisted by 5.32 (10) ° with respect to the "CDFP" group; this is similar to the twist in related compound NOJKUT (Gainsford et al., 2008) of 5.69 (17) °. Atom C5 is essentially tetrahedral with the C23–C5–C10 angle widened to 115.83 (11) ° and the internal O1–C5–C4 102.11 (10) °. The phenyl rings are either close to or statistically planar (e.g. ring C17–C22, maximum deviation C19, 0.007 (2) Å). The mean planes of the phenyl groups bound directly to the CDFP atom C5 (C10–C15, C23–C28) make angles of 88.70 (8) & 67.60 (8) ° to the CDFP plane and 69.84 (7) ° to each other. This last value is similar to those observed in 1,1,1-tris(4-benzyloxyphenyl)ethane 78.26 (17), 88.89 (17) & 86.27 (18) ° (GERLIY, Roesky et al., 1997), 2,2-bis(4-(benzoyloxy)phenyl)propane 80.3 (1) ° (KIKKAR, Wang et al., 2007) and bis(4-(benzyloxy)phenyl)methane 84.9 (2) & 81.5 (2) ° (SUHNEP, Nikitin et al., 2010). (Compound REFCODES are from the C.S.D., Version 5.32, with August 2011 updates; Allen, 2002).
The main difference observed in the structure is in the relative angular dispositions of the terminal phenyl groups. Here significant differences are seen with the different angles to their attached phenyl rings: 88.79 ° (C17–C22) and 37.81 (8) ° (C30–C35) respectively. It is only after consideration of the molecular packing that this deviation for the pendant identical chemical groups can be rationalized. The crystal packing is dominated by C–H···π bonds (no other significant interactions are observed) with the strongest interaction involving the methylene hydrogen on C29 (H29A) and the phenyl hydrogen H33 (Table 1, Figure 2). The normal expectation for linked biphenyl rings is for their dihedral angles to be ~90 ° to alleviate adjacent ring H···H interactions. Here the restricted twist (\sim 38 °) noted for just one of the ligand arms (involving C23–C28 & C30–C35 rings) ensures optimal C—H···π attractive overlap between glide plane related molecules.
The benzoyloxy-phenyl ring dihedral angles in the comparable structures, whilst variable, are reasonably consistent with the above analysis. For KIKKAR, the angle is 76.54 (9) ° with one C—H···π interaction involving the methylene hydrogen and for SUHNEP, 10.4 (2) & 8.6 (2) ° with six C–H···π interactions utilizing methylene & phenyl hydrogen atoms. Finally for GERLIY the angles are 78.9 (2), 7.7 (2) and 30.6 (2) ° with two C–H···π interactions involving one methylene and one phenyl hydrogen. Apparently, the orientation of the terminal benzoylozy groups with respect to the attached phenyl group is highly dependent on the C–H···π interactions, so no strict orientation rule can be defined.
There are other intermolecular interactions in (I) (Table 1) but the two highlighted (Figure 2 and above) are both closer (Cg···H < 2.8 Å) and have maximized C–H···Cg angles (Desiraju & Steiner, 1999). In Table 1 & Figure 2, labels Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 & C23–C28 respectively. In conclusion, we note that C–H···π interactions add to the list of weak but important interactions in crystal formation, so that the preferred molecular alignment of the target molecules is not attained.