organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3046-o3047

C—H⋯π packing inter­actions in 2-[5,5-bis­­(4-benzyl­oxyphen­yl)-3-cyano-4-methyl-2,5-di­hydro­furan-2-yl­­idene]malono­nitrile

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 12 October 2011; accepted 20 October 2011; online 29 October 2011)

The title mol­ecule, C35H25N3O3, packs utilizing C—H⋯π attractive inter­actions causing the identical 4-benzyl­oxyphenyl groups to pack with different conformational angles. This difference is consistent with the variable inter­planar dihedral angles found in closely related structures.

Related literature

For general background, see: Smith et al. (2006[Smith, G. J., Dunford, C. L., Kay, A. J. & Woolhouse, A. D. (2006). J. Photochem. Photobiol. A, 179, 237-242.], 2010[Smith, G. J., Middleton, A., Clarke, D. J., Bhuiyan, M. D. H. & Jay, A. J. (2010). Opt. Mater. 32, 1237-1243.]); Teshome et al. (2009[Teshome, A., Kay, A. J., Woolhouse, A. D., Clays, K., Asselberghs, I. & Smith, G. J. (2009). Opt. Mater. 31, 575-582.]); Datta & Pati (2003[Datta, A. & Pati, S. K. (2003). J. Chem. Phys. 118, 8420-8427.]). For related structures, see: Li et al. (2005[Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093-o2095.]); Nikitin et al. (2010[Nikitin, N., Ortin, Y., Muller-Bunz, H., Plamont, M.-A., Jaouen, G., Vessieres, A. & McGlinchey, M. J. (2010). J. Organomet. Chem. 695, 595-608.]); Roesky et al. (1997[Roesky, C. E. O., Czugler, M. & Weber, E. (1997). Z. Kristallogr. New Cryst. Struct. 212, 327-328.]); Wang et al. (2007[Wang, G.-W., Wu, W.-Y. & Wang, J.-T. (2007). Acta Cryst. E63, o3726.]); Gainsford et al. (2008[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616-o619.]). For synthesis details, see: Anderson (2009[Anderson, J. (2009). BSc (Hons) project report. Victoria University of Wellington, New Zealand.]). For C—H⋯π bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11-21. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C35H25N3O3

  • Mr = 535.58

  • Monoclinic, P 21 /c

  • a = 18.1696 (8) Å

  • b = 10.0728 (5) Å

  • c = 15.8413 (7) Å

  • β = 103.779 (3)°

  • V = 2815.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.35 × 0.21 × 0.09 mm

Data collection
  • Bruker–Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.664, Tmax = 0.746

  • 62528 measured reflections

  • 7017 independent reflections

  • 4764 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.115

  • S = 1.05

  • 7017 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 and C23–C28, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cg1i 0.95 2.85 3.596 (2) 136
C29—-H29ACg1ii 0.99 2.59 3.5276 (17) 158
C33—-H33⋯Cg2iii 0.95 2.77 3.697 (3) 167
C16—-H16BCg3iv 0.99 2.97 3.9262 (18) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

New electro-optic modulators will be key components for high capacity transmissions in the telecommunications industry. Organic nonlinear optical (NLO) chromophores appear to offer a very attractive alternative to currently used inorganic materials (e.g. LiNbO3) as they have a much faster response times, are easer to prepare, have low drive voltages and low signal losses. However, issues of aggregation, photochemical & thermal stability are proving significant barriers to the successful uptake of organic NLO materials. A considerable effort has been made over the last two decades to develop organic chromophores with the largest possible NLO response. Due to their dipolar nature, strong electrostatic interactions are possible between individual NLO chromophore molecules which leads to a significant tendency to aggregate (Smith et al., 2006; Datta & Pati, 2003; Teshome et al., 2009). Therefore, much effort has been expended developing methods to minimize aggregation between NLO chromophores(Smith et al., 2010).

One of the most successful strategies to minimize aggregation has been to add bulky pendant groups onto the chromophores. If the pendant groups are aromatic in nature, stacking interactions between the aromatic rings may result, which can overcome the dipole-dipole interactions that cause aggregation (Smith et al., 2010). We have synthesized a new acceptor (the title compound) with bulky groups to reduce aggregation as well as reduce, or even eliminate rotation around the conjugated polyene bridge - acceptor bond.

The asymmetric unit contents of the title compound(I) are shown in Figure 1. The 5-membered ring plane of atoms O1,C4—C7 (hereafter "CDFP", [3-cyano-5,5-dimethyl-2,5-dihydrofuran-2-ylidene]propanedinitrile) can be regarded as planar with maximum out of plane deviation for O1 of 0.023 (1) Å. The dicyano group (N1,C1,C2,C3,N2,C6) is planar but twisted by 5.32 (10) ° with respect to the "CDFP" group; this is similar to the twist in related compound NOJKUT (Gainsford et al., 2008) of 5.69 (17) °. Atom C5 is essentially tetrahedral with the C23–C5–C10 angle widened to 115.83 (11) ° and the internal O1–C5–C4 102.11 (10) °. The phenyl rings are either close to or statistically planar (e.g. ring C17–C22, maximum deviation C19, 0.007 (2) Å). The mean planes of the phenyl groups bound directly to the CDFP atom C5 (C10–C15, C23–C28) make angles of 88.70 (8) & 67.60 (8) ° to the CDFP plane and 69.84 (7) ° to each other. This last value is similar to those observed in 1,1,1-tris(4-benzyloxyphenyl)ethane 78.26 (17), 88.89 (17) & 86.27 (18) ° (GERLIY, Roesky et al., 1997), 2,2-bis(4-(benzoyloxy)phenyl)propane 80.3 (1) ° (KIKKAR, Wang et al., 2007) and bis(4-(benzyloxy)phenyl)methane 84.9 (2) & 81.5 (2) ° (SUHNEP, Nikitin et al., 2010). (Compound REFCODES are from the C.S.D., Version 5.32, with August 2011 updates; Allen, 2002).

The main difference observed in the structure is in the relative angular dispositions of the terminal phenyl groups. Here significant differences are seen with the different angles to their attached phenyl rings: 88.79 ° (C17–C22) and 37.81 (8) ° (C30–C35) respectively. It is only after consideration of the molecular packing that this deviation for the pendant identical chemical groups can be rationalized. The crystal packing is dominated by C–H···π bonds (no other significant interactions are observed) with the strongest interaction involving the methylene hydrogen on C29 (H29A) and the phenyl hydrogen H33 (Table 1, Figure 2). The normal expectation for linked biphenyl rings is for their dihedral angles to be ~90 ° to alleviate adjacent ring H···H interactions. Here the restricted twist (\sim 38 °) noted for just one of the ligand arms (involving C23–C28 & C30–C35 rings) ensures optimal C—H···π attractive overlap between glide plane related molecules.

The benzoyloxy-phenyl ring dihedral angles in the comparable structures, whilst variable, are reasonably consistent with the above analysis. For KIKKAR, the angle is 76.54 (9) ° with one C—H···π interaction involving the methylene hydrogen and for SUHNEP, 10.4 (2) & 8.6 (2) ° with six C–H···π interactions utilizing methylene & phenyl hydrogen atoms. Finally for GERLIY the angles are 78.9 (2), 7.7 (2) and 30.6 (2) ° with two C–H···π interactions involving one methylene and one phenyl hydrogen. Apparently, the orientation of the terminal benzoylozy groups with respect to the attached phenyl group is highly dependent on the C–H···π interactions, so no strict orientation rule can be defined.

There are other intermolecular interactions in (I) (Table 1) but the two highlighted (Figure 2 and above) are both closer (Cg···H < 2.8 Å) and have maximized C–H···Cg angles (Desiraju & Steiner, 1999). In Table 1 & Figure 2, labels Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 & C23–C28 respectively. In conclusion, we note that C–H···π interactions add to the list of weak but important interactions in crystal formation, so that the preferred molecular alignment of the target molecules is not attained.

Related literature top

For general background, see: Smith et al. (2006, 2010); Teshome et al. (2009); Datta & Pati (2003). For related structures, see: Li et al. (2005); Nikitin et al. (2010); Roesky et al. (1997); Wang et al. (2007); Gainsford et al. (2008). For related literature [on what subject?], see: Anderson (2009); Allen (2002). For C–H···π bonding, see: Desiraju & Steiner (1999).

Experimental top

Compound(I) was prepared by the condensation of 1,1-bis(4-(benzyloxy)phenyl)-1-hydroxypropan-2-one with 4 equivalents of malononitrile over 10 days as described in Anderson (2009). Crystals were obtained from a 1:1 dichloromethane:acetone mixture.

Refinement top

Five reflections affected by the backstop and 6 others which were clearly outlier data (also at low angle) were omitted from the refinements (using OMIT). The methyl and other H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom. All H atoms bound to carbon were constrained to their expected geometries (C—H 0.95, 0.98 & 0.99 Å).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and SADABS (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram [Mercury, Macrae et al.,(2008)] of the unit cell. Non-hydrogen atoms, ring centroids (Cg) and H atoms involved in C–H···π bonding shown as balls: two close contacts indicated by dotted lines identify the bonds (see text). Symmetry (i) 1 - x, 1 - y, 1 - z (ii) x, 1.5 - y, 1/2 + z (iii) 1 - x, y - 1/2, 1/2 - z.
2-[5,5-Bis(4-benzyloxyphenyl)-3-cyano-4-methyl-2,5-dihydrofuran-2- ylidene]malononitrile top
Crystal data top
C35H25N3O3F(000) = 1120
Mr = 535.58Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7358 reflections
a = 18.1696 (8) Åθ = 2.3–26.7°
b = 10.0728 (5) ŵ = 0.08 mm1
c = 15.8413 (7) ÅT = 123 K
β = 103.779 (3)°Triangular, pink
V = 2815.8 (2) Å30.35 × 0.21 × 0.09 mm
Z = 4
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
7017 independent reflections
Radiation source: fine-focus sealed tube4764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 8.333 pixels mm-1θmax = 28.5°, θmin = 2.6°
ϕ and ω scansh = 2424
Absorption correction: multi-scan
(Software?; Blessing, 1995)
k = 1313
Tmin = 0.664, Tmax = 0.746l = 2121
62528 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.6136P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
7017 reflectionsΔρmax = 0.26 e Å3
372 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (5)
Crystal data top
C35H25N3O3V = 2815.8 (2) Å3
Mr = 535.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.1696 (8) ŵ = 0.08 mm1
b = 10.0728 (5) ÅT = 123 K
c = 15.8413 (7) Å0.35 × 0.21 × 0.09 mm
β = 103.779 (3)°
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
7017 independent reflections
Absorption correction: multi-scan
(Software?; Blessing, 1995)
4764 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.746Rint = 0.073
62528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
7017 reflectionsΔρmin = 0.19 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12002 (5)0.68767 (10)0.34643 (6)0.0281 (2)
O20.39969 (6)0.75816 (11)0.64285 (6)0.0345 (3)
O30.25635 (6)0.44822 (11)0.04549 (6)0.0378 (3)
N10.12627 (9)0.69465 (18)0.39894 (12)0.0612 (5)
N20.02878 (9)0.99105 (17)0.32599 (10)0.0516 (4)
N30.05524 (8)0.37366 (16)0.41384 (10)0.0507 (4)
C10.07014 (10)0.71929 (18)0.38148 (11)0.0423 (4)
C20.00032 (8)0.74932 (16)0.36127 (9)0.0325 (3)
C30.01570 (9)0.88387 (18)0.34204 (10)0.0374 (4)
C40.12121 (8)0.46134 (15)0.37889 (9)0.0279 (3)
C50.17157 (8)0.57042 (14)0.35864 (9)0.0259 (3)
C60.05397 (8)0.65399 (15)0.36280 (9)0.0277 (3)
C70.05349 (8)0.51294 (15)0.38106 (9)0.0285 (3)
C80.00822 (9)0.43825 (16)0.39840 (10)0.0350 (4)
C90.14590 (10)0.32107 (15)0.39324 (11)0.0385 (4)
H9A0.10420.26750.40450.058*
H9B0.18950.31570.44330.058*
H9C0.16030.28730.34140.058*
C100.23631 (8)0.60639 (14)0.43524 (9)0.0256 (3)
C110.30259 (8)0.66571 (15)0.42418 (9)0.0290 (3)
H110.31070.67350.36730.035*
C120.35666 (8)0.71334 (15)0.49400 (9)0.0305 (3)
H120.40200.75170.48520.037*
C130.34456 (8)0.70514 (15)0.57738 (9)0.0290 (3)
C140.27911 (8)0.64498 (15)0.58974 (9)0.0306 (3)
H140.27080.63790.64650.037*
C150.22617 (8)0.59547 (15)0.51933 (9)0.0293 (3)
H150.18200.55310.52850.035*
C160.38713 (9)0.74530 (18)0.72893 (9)0.0399 (4)
H16A0.37920.65070.74130.048*
H16B0.34100.79510.73260.048*
C170.45409 (9)0.79826 (16)0.79476 (9)0.0332 (4)
C180.51398 (10)0.71623 (18)0.83300 (10)0.0405 (4)
H180.51420.62620.81520.049*
C190.57374 (10)0.76491 (19)0.89730 (11)0.0444 (4)
H190.61510.70870.92260.053*
C200.57305 (10)0.89412 (19)0.92428 (11)0.0432 (4)
H200.61350.92680.96900.052*
C210.51405 (9)0.97639 (19)0.88694 (11)0.0441 (4)
H210.51371.06600.90550.053*
C220.45512 (9)0.92836 (17)0.82220 (11)0.0386 (4)
H220.41460.98590.79620.046*
C230.19339 (8)0.54421 (14)0.27323 (9)0.0258 (3)
C240.15600 (8)0.60416 (15)0.19629 (9)0.0285 (3)
H240.11670.66620.19680.034*
C250.17488 (8)0.57509 (15)0.11830 (9)0.0305 (3)
H250.14880.61720.06610.037*
C260.23175 (8)0.48458 (15)0.11714 (9)0.0288 (3)
C270.26916 (8)0.42278 (15)0.19397 (9)0.0306 (3)
H270.30780.35960.19320.037*
C280.25050 (8)0.45259 (15)0.27101 (9)0.0292 (3)
H280.27670.41040.32320.035*
C290.22598 (9)0.51569 (16)0.03469 (9)0.0341 (4)
H29A0.22870.61300.02580.041*
H29B0.17230.49050.05810.041*
C300.27319 (10)0.47451 (15)0.09672 (10)0.0356 (4)
C310.35127 (10)0.46188 (17)0.06759 (11)0.0431 (4)
H310.37500.48120.00870.052*
C320.39502 (12)0.42104 (19)0.12404 (13)0.0551 (5)
H320.44830.41090.10350.066*
C330.36105 (14)0.39554 (19)0.20918 (14)0.0607 (6)
H330.39090.36710.24760.073*
C340.28422 (15)0.41071 (18)0.23958 (12)0.0569 (6)
H340.26120.39420.29910.068*
C350.23988 (12)0.45034 (16)0.18336 (10)0.0447 (4)
H350.18670.46080.20460.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (5)0.0299 (6)0.0299 (5)0.0039 (4)0.0088 (4)0.0006 (4)
O20.0341 (6)0.0465 (7)0.0231 (5)0.0072 (5)0.0073 (4)0.0020 (5)
O30.0513 (7)0.0409 (6)0.0252 (5)0.0108 (5)0.0173 (5)0.0047 (5)
N10.0379 (9)0.0759 (12)0.0742 (12)0.0119 (8)0.0223 (8)0.0099 (10)
N20.0505 (10)0.0466 (10)0.0561 (10)0.0130 (8)0.0097 (8)0.0069 (8)
N30.0436 (9)0.0545 (10)0.0581 (10)0.0150 (7)0.0205 (8)0.0137 (8)
C10.0325 (9)0.0510 (11)0.0433 (10)0.0102 (8)0.0092 (8)0.0017 (8)
C20.0268 (8)0.0419 (9)0.0285 (8)0.0048 (7)0.0058 (6)0.0011 (7)
C30.0327 (9)0.0458 (11)0.0328 (8)0.0135 (8)0.0061 (7)0.0010 (8)
C40.0312 (8)0.0313 (8)0.0221 (7)0.0023 (6)0.0080 (6)0.0032 (6)
C50.0253 (7)0.0266 (7)0.0262 (7)0.0045 (6)0.0072 (6)0.0011 (6)
C60.0236 (7)0.0390 (9)0.0199 (7)0.0000 (6)0.0039 (6)0.0036 (6)
C70.0277 (8)0.0344 (8)0.0239 (7)0.0037 (6)0.0075 (6)0.0051 (6)
C80.0317 (8)0.0403 (9)0.0340 (8)0.0057 (7)0.0098 (7)0.0103 (7)
C90.0450 (10)0.0301 (9)0.0446 (9)0.0006 (7)0.0187 (8)0.0012 (7)
C100.0270 (7)0.0257 (7)0.0247 (7)0.0038 (6)0.0072 (6)0.0010 (6)
C110.0308 (8)0.0346 (8)0.0236 (7)0.0013 (6)0.0102 (6)0.0019 (6)
C120.0285 (8)0.0364 (9)0.0281 (8)0.0019 (6)0.0095 (6)0.0020 (6)
C130.0297 (8)0.0311 (8)0.0254 (7)0.0010 (6)0.0049 (6)0.0010 (6)
C140.0338 (8)0.0364 (8)0.0236 (7)0.0007 (7)0.0110 (6)0.0011 (6)
C150.0298 (8)0.0334 (8)0.0266 (7)0.0014 (6)0.0104 (6)0.0013 (6)
C160.0417 (9)0.0539 (11)0.0251 (8)0.0118 (8)0.0099 (7)0.0017 (7)
C170.0340 (8)0.0436 (9)0.0236 (7)0.0051 (7)0.0096 (6)0.0020 (7)
C180.0475 (10)0.0412 (10)0.0345 (9)0.0012 (8)0.0129 (8)0.0008 (7)
C190.0405 (10)0.0561 (12)0.0355 (9)0.0050 (8)0.0069 (8)0.0136 (8)
C200.0382 (9)0.0602 (12)0.0299 (8)0.0104 (8)0.0053 (7)0.0005 (8)
C210.0400 (10)0.0454 (10)0.0468 (10)0.0088 (8)0.0105 (8)0.0091 (8)
C220.0315 (8)0.0429 (10)0.0407 (9)0.0007 (7)0.0074 (7)0.0038 (7)
C230.0243 (7)0.0286 (8)0.0252 (7)0.0011 (6)0.0072 (6)0.0012 (6)
C240.0276 (7)0.0307 (8)0.0277 (7)0.0032 (6)0.0077 (6)0.0014 (6)
C250.0331 (8)0.0342 (8)0.0237 (7)0.0024 (7)0.0058 (6)0.0047 (6)
C260.0342 (8)0.0292 (8)0.0252 (7)0.0016 (6)0.0115 (6)0.0008 (6)
C270.0319 (8)0.0306 (8)0.0308 (8)0.0046 (6)0.0104 (6)0.0003 (6)
C280.0298 (8)0.0325 (8)0.0254 (7)0.0035 (6)0.0069 (6)0.0025 (6)
C290.0451 (9)0.0335 (9)0.0242 (7)0.0003 (7)0.0090 (7)0.0017 (6)
C300.0560 (11)0.0253 (8)0.0284 (8)0.0037 (7)0.0157 (7)0.0010 (6)
C310.0571 (11)0.0409 (10)0.0354 (9)0.0058 (8)0.0189 (8)0.0040 (7)
C320.0688 (13)0.0478 (11)0.0602 (13)0.0076 (10)0.0379 (11)0.0078 (9)
C330.0989 (18)0.0425 (11)0.0569 (13)0.0029 (11)0.0507 (13)0.0045 (9)
C340.1087 (18)0.0387 (10)0.0301 (9)0.0159 (11)0.0301 (11)0.0068 (8)
C350.0714 (13)0.0338 (9)0.0304 (8)0.0126 (8)0.0150 (8)0.0014 (7)
Geometric parameters (Å, º) top
O1—C61.3307 (16)C17—C221.379 (2)
O1—C51.4911 (16)C17—C181.386 (2)
O2—C131.3673 (17)C18—C191.389 (2)
O2—C161.4410 (17)C18—H180.9500
O3—C261.3654 (16)C19—C201.371 (3)
O3—C291.4303 (17)C19—H190.9500
N1—C11.146 (2)C20—C211.372 (2)
N2—C31.147 (2)C20—H200.9500
N3—C81.146 (2)C21—C221.382 (2)
C1—C21.424 (2)C21—H210.9500
C2—C61.364 (2)C22—H220.9500
C2—C31.431 (2)C23—C241.385 (2)
C4—C71.344 (2)C23—C281.395 (2)
C4—C91.484 (2)C24—C251.3899 (19)
C4—C51.512 (2)C24—H240.9500
C5—C101.5190 (19)C25—C261.381 (2)
C5—C231.5208 (19)C25—H250.9500
C6—C71.450 (2)C26—C271.392 (2)
C7—C81.430 (2)C27—C281.3755 (19)
C9—H9A0.9800C27—H270.9500
C9—H9B0.9800C28—H280.9500
C9—H9C0.9800C29—C301.508 (2)
C10—C151.3919 (19)C29—H29A0.9900
C10—C111.392 (2)C29—H29B0.9900
C11—C121.379 (2)C30—C351.383 (2)
C11—H110.9500C30—C311.389 (2)
C12—C131.3921 (19)C31—C321.393 (2)
C12—H120.9500C31—H310.9500
C13—C141.390 (2)C32—C331.367 (3)
C14—C151.381 (2)C32—H320.9500
C14—H140.9500C33—C341.372 (3)
C15—H150.9500C33—H330.9500
C16—C171.499 (2)C34—C351.394 (3)
C16—H16A0.9900C34—H340.9500
C16—H16B0.9900C35—H350.9500
C6—O1—C5109.92 (11)C17—C18—C19120.35 (17)
C13—O2—C16115.48 (11)C17—C18—H18119.8
C26—O3—C29118.50 (12)C19—C18—H18119.8
N1—C1—C2179.0 (2)C20—C19—C18120.00 (16)
C6—C2—C1121.55 (15)C20—C19—H19120.0
C6—C2—C3119.70 (14)C18—C19—H19120.0
C1—C2—C3118.72 (14)C19—C20—C21120.21 (16)
N2—C3—C2179.00 (18)C19—C20—H20119.9
C7—C4—C9127.58 (14)C21—C20—H20119.9
C7—C4—C5109.18 (13)C20—C21—C22119.74 (17)
C9—C4—C5123.24 (13)C20—C21—H21120.1
O1—C5—C4102.11 (10)C22—C21—H21120.1
O1—C5—C10104.93 (11)C17—C22—C21121.10 (16)
C4—C5—C10113.35 (11)C17—C22—H22119.5
O1—C5—C23108.11 (11)C21—C22—H22119.5
C4—C5—C23111.21 (11)C24—C23—C28118.56 (13)
C10—C5—C23115.83 (11)C24—C23—C5122.02 (12)
O1—C6—C2119.39 (14)C28—C23—C5119.36 (12)
O1—C6—C7109.70 (12)C23—C24—C25121.15 (13)
C2—C6—C7130.90 (14)C23—C24—H24119.4
C4—C7—C8124.47 (14)C25—C24—H24119.4
C4—C7—C6108.95 (13)C26—C25—C24119.65 (13)
C8—C7—C6126.57 (13)C26—C25—H25120.2
N3—C8—C7176.72 (19)C24—C25—H25120.2
C4—C9—H9A109.5O3—C26—C25125.61 (13)
C4—C9—H9B109.5O3—C26—C27114.74 (13)
H9A—C9—H9B109.5C25—C26—C27119.65 (13)
C4—C9—H9C109.5C28—C27—C26120.39 (14)
H9A—C9—H9C109.5C28—C27—H27119.8
H9B—C9—H9C109.5C26—C27—H27119.8
C15—C10—C11118.03 (13)C27—C28—C23120.59 (13)
C15—C10—C5119.46 (12)C27—C28—H28119.7
C11—C10—C5122.02 (12)C23—C28—H28119.7
C12—C11—C10121.38 (13)O3—C29—C30106.78 (13)
C12—C11—H11119.3O3—C29—H29A110.4
C10—C11—H11119.3C30—C29—H29A110.4
C11—C12—C13119.81 (13)O3—C29—H29B110.4
C11—C12—H12120.1C30—C29—H29B110.4
C13—C12—H12120.1H29A—C29—H29B108.6
O2—C13—C14124.09 (13)C35—C30—C31118.96 (16)
O2—C13—C12116.35 (13)C35—C30—C29120.83 (16)
C14—C13—C12119.56 (13)C31—C30—C29120.20 (14)
C15—C14—C13119.91 (13)C30—C31—C32120.51 (17)
C15—C14—H14120.0C30—C31—H31119.7
C13—C14—H14120.0C32—C31—H31119.7
C14—C15—C10121.27 (13)C33—C32—C31119.8 (2)
C14—C15—H15119.4C33—C32—H32120.1
C10—C15—H15119.4C31—C32—H32120.1
O2—C16—C17109.94 (12)C32—C33—C34120.51 (18)
O2—C16—H16A109.7C32—C33—H33119.7
C17—C16—H16A109.7C34—C33—H33119.7
O2—C16—H16B109.7C33—C34—C35120.14 (18)
C17—C16—H16B109.7C33—C34—H34119.9
H16A—C16—H16B108.2C35—C34—H34119.9
C22—C17—C18118.58 (15)C30—C35—C34120.09 (19)
C22—C17—C16120.34 (15)C30—C35—H35120.0
C18—C17—C16120.97 (16)C34—C35—H35120.0
C6—O1—C5—C43.74 (14)C13—O2—C16—C17175.86 (13)
C6—O1—C5—C10114.73 (12)O2—C16—C17—C2293.34 (17)
C6—O1—C5—C23121.10 (12)O2—C16—C17—C1890.50 (18)
C7—C4—C5—O12.30 (14)C22—C17—C18—C190.3 (2)
C9—C4—C5—O1177.55 (13)C16—C17—C18—C19176.51 (14)
C7—C4—C5—C10110.01 (13)C17—C18—C19—C201.1 (2)
C9—C4—C5—C1070.14 (17)C18—C19—C20—C211.1 (2)
C7—C4—C5—C23117.41 (13)C19—C20—C21—C220.2 (3)
C9—C4—C5—C2362.44 (18)C18—C17—C22—C210.6 (2)
C5—O1—C6—C2175.49 (12)C16—C17—C22—C21175.68 (15)
C5—O1—C6—C73.83 (15)C20—C21—C22—C170.6 (2)
C1—C2—C6—O1177.65 (13)O1—C5—C23—C2412.82 (18)
C3—C2—C6—O10.1 (2)C4—C5—C23—C2498.50 (16)
C1—C2—C6—C71.5 (3)C10—C5—C23—C24130.18 (14)
C3—C2—C6—C7179.23 (14)O1—C5—C23—C28170.13 (12)
C9—C4—C7—C80.1 (2)C4—C5—C23—C2878.55 (16)
C5—C4—C7—C8179.99 (13)C10—C5—C23—C2852.77 (18)
C9—C4—C7—C6179.62 (14)C28—C23—C24—C250.5 (2)
C5—C4—C7—C60.22 (16)C5—C23—C24—C25177.53 (13)
O1—C6—C7—C42.29 (16)C23—C24—C25—C260.2 (2)
C2—C6—C7—C4176.92 (15)C29—O3—C26—C255.4 (2)
O1—C6—C7—C8177.47 (13)C29—O3—C26—C27174.32 (13)
C2—C6—C7—C83.3 (3)C24—C25—C26—O3179.27 (14)
O1—C5—C10—C1578.88 (15)C24—C25—C26—C270.4 (2)
C4—C5—C10—C1531.71 (18)O3—C26—C27—C28178.91 (13)
C23—C5—C10—C15162.01 (13)C25—C26—C27—C280.8 (2)
O1—C5—C10—C1192.98 (15)C26—C27—C28—C230.6 (2)
C4—C5—C10—C11156.44 (13)C24—C23—C28—C270.1 (2)
C23—C5—C10—C1126.14 (19)C5—C23—C28—C27177.22 (13)
C15—C10—C11—C120.4 (2)C26—O3—C29—C30169.49 (12)
C5—C10—C11—C12171.53 (13)O3—C29—C30—C35140.52 (14)
C10—C11—C12—C131.5 (2)O3—C29—C30—C3140.28 (19)
C16—O2—C13—C141.5 (2)C35—C30—C31—C322.2 (2)
C16—O2—C13—C12178.30 (14)C29—C30—C31—C32178.57 (15)
C11—C12—C13—O2178.06 (13)C30—C31—C32—C331.2 (3)
C11—C12—C13—C142.1 (2)C31—C32—C33—C340.4 (3)
O2—C13—C14—C15179.31 (14)C32—C33—C34—C351.0 (3)
C12—C13—C14—C150.9 (2)C31—C30—C35—C341.6 (2)
C13—C14—C15—C101.1 (2)C29—C30—C35—C34179.18 (15)
C11—C10—C15—C141.7 (2)C33—C34—C35—C300.0 (3)
C5—C10—C15—C14170.48 (13)
Hydrogen-bond geometry (Å, º) top
Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 and C23–C28, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg1i0.952.853.596 (2)136
C29—-H29A···Cg1ii0.992.593.5276 (17)158
C33—-H33···Cg2iii0.952.773.697 (3)167
C16—-H16B···Cg3iv0.992.973.9262 (18)162
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z3/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC35H25N3O3
Mr535.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)18.1696 (8), 10.0728 (5), 15.8413 (7)
β (°) 103.779 (3)
V3)2815.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.21 × 0.09
Data collection
DiffractometerBruker–Nonius APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Software?; Blessing, 1995)
Tmin, Tmax0.664, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
62528, 7017, 4764
Rint0.073
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.115, 1.05
No. of reflections7017
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT and SADABS (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1–3 represent the centroids of the phenyl rings C10–C15, C17–C22 and C23–C28, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg1i0.952.853.596 (2)136
C29—-H29A···Cg1ii0.992.593.5276 (17)158
C33—-H33···Cg2iii0.952.773.697 (3)167
C16—-H16B···Cg3iv0.992.973.9262 (18)162
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z3/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Drs J. Wikaira and C. Fitchett of the University of Canterbury for their assistance in data collection.

References

First citationAnderson, J. (2009). BSc (Hons) project report. Victoria University of Wellington, New Zealand.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, A. & Pati, S. K. (2003). J. Chem. Phys. 118, 8420–8427.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–21. New York: Oxford University Press Inc.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093–o2095.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNikitin, N., Ortin, Y., Muller-Bunz, H., Plamont, M.-A., Jaouen, G., Vessieres, A. & McGlinchey, M. J. (2010). J. Organomet. Chem. 695, 595–608.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoesky, C. E. O., Czugler, M. & Weber, E. (1997). Z. Kristallogr. New Cryst. Struct. 212, 327–328.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. J., Dunford, C. L., Kay, A. J. & Woolhouse, A. D. (2006). J. Photochem. Photobiol. A, 179, 237–242.  Web of Science CrossRef CAS Google Scholar
First citationSmith, G. J., Middleton, A., Clarke, D. J., Bhuiyan, M. D. H. & Jay, A. J. (2010). Opt. Mater. 32, 1237–1243.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeshome, A., Kay, A. J., Woolhouse, A. D., Clays, K., Asselberghs, I. & Smith, G. J. (2009). Opt. Mater. 31, 575–582.  Web of Science CrossRef CAS Google Scholar
First citationWang, G.-W., Wu, W.-Y. & Wang, J.-T. (2007). Acta Cryst. E63, o3726.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3046-o3047
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds