metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1489-m1490

Aqua­(4,4′-bi­pyridine-κN)bis­­(1,4-dioxo-1,4-di­hydronaphthalen-2-olato-κ2O1,O2)zinc 4,4′-bi­pyridine mono­solvate dihydrate

aDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, CEP 24.020-140, Brazil
*Correspondence e-mail: jresende@vm.uff.br

(Received 10 June 2011; accepted 20 September 2011; online 5 October 2011)

The reaction of 2-hy­droxy-1,4-naphtho­quinone and 4,4′-bipyridine with zinc acetate produced the title compound, [Zn(C10H5O3)2(C10H8N2)(H2O)]·C10H8N2·2H2O. The bond lengths and angles around the metal atom indicate a deviation from octa­hedral geometry. The two naphtho­quinone ligands coordinate in a cis fashion, with the 4,4′-bipyridine ligand and the water mol­ecules completing the coordination sphere of the metal atom. The asymmetric unit contains also one free 4,4′-bipyridine mol­ecule and two uncoordinated water mol­ecules. These mol­ecules make contacts with the complex through O—H⋯N and O—H⋯O hydrogen bonds, creating a layer two-dimensional network parallel to (121).

Related literature

For biological applications of naphtho­quinone-bearing complexes, see: Francisco et al. (2008[Francisco, A. I., Vargas, M. D., Carneiro, J. W. M., Lanznaster, M., Torres, J. C., Camara, C. A. & Pinto, A. C. (2008). J. Mol. Struct. 891, 228-232.]); Bustamante et al. (2009[Bustamante, F. L. S., Souza, E. T., Lanznaster, M. & Scarpellini, M. (2009). Rev. Virtual de Quim. 1, 138-148.]); Neves et al. (2009[Neves, A. P., Barbosa, C. C., Greco, S. J., Vargas, M. D., Visentin, L. C., Pinheiro, C. B., Mangrich, A. S., Barbosa, J. P. & da Costa, G. L. (2009). J. Braz. Chem. Soc. 20, 712-727.]). For reference structural data, see: Garge et al. (1990[Garge, P., Chikate, R., Padhye, S., Savariault, J. M., De Loth, P. & Tuchagues, J. P. (1990). Inorg. Chem. 29, 3315-3320.]); Beni et al. (2006[Beni, A., Carbonera, C., Dei, A., Létard, J.-F., Righini, R., Sangregorio, C. & Sorace, L. (2006). J. Braz. Chem. Soc. 17, 1522-1533.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H5O3)2(C10H8N2)(H2O)]·C10H8N2·2H2O

  • Mr = 778.07

  • Triclinic, [P \overline 1]

  • a = 8.1448 (16) Å

  • b = 14.179 (3) Å

  • c = 15.910 (3) Å

  • α = 73.90 (3)°

  • β = 88.59 (3)°

  • γ = 89.53 (3)°

  • V = 1764.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 293 K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.983, Tmax = 1.000

  • 11283 measured reflections

  • 6230 independent reflections

  • 3619 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.089

  • S = 0.91

  • 6230 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn—O2A 1.981 (2)
Zn—O2B 2.017 (2)
Zn—O1W 2.034 (2)
Zn—N1C 2.098 (3)
Zn—O1A 2.275 (2)
Zn—O1B 2.283 (2)
O2A—Zn—O2B 163.59 (9)
O2A—Zn—O1W 88.76 (10)
O2B—Zn—O1W 97.85 (9)
O2A—Zn—N1C 101.78 (10)
O2B—Zn—N1C 92.45 (10)
O1W—Zn—N1C 96.25 (10)
O2A—Zn—O1A 76.55 (9)
O2B—Zn—O1A 95.40 (9)
O1W—Zn—O1A 164.84 (8)
O2B—Zn—O1B 75.22 (8)
N1C—Zn—O1B 165.07 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯N1Di 0.85 1.97 2.754 (4) 153
O1W—H21W⋯O2Bii 0.86 1.97 2.750 (3) 150
O3W—H23W⋯N2Diii 0.83 2.06 2.887 (4) 173
O2W—H22W⋯N2Civ 0.83 2.10 2.863 (4) 152
O3W—H13W⋯O3Bii 0.83 2.02 2.846 (4) 175
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z; (iv) -x+1, -y, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quinones are a wide class of compounds with electroactivity, which coordinate to transition metal ions and can undergo metal-to-ligand electron transfer. The electrochemical properties of natural and synthetic naphthoquinones have been explored for applications such as the development of new drugs for cancer (Francisco et al., 2008; Bustamante et al., 2009; Neves et al., 2009). Catechols and naphthoquinones have also been applied in studies related to molecular electronics (Beni et al., 2006; Garge et al., 1990). Impelled by these motivations, our group has started a systematic investigation on the coordination chemistry of 2-hydroxy-1,4-naphthoquinones.

The title compound (Figure 1) contains two lawsonate ligands coordinated in cis fashion by the O1A, O2A, O1B and O2B atoms with Zn—O bond lengths of 2.275 (5), 1.981 (2), 2.283 (2), and 2.017 (2) Å, respectively (table 1). One 4,4'-bipyridine and one water molecule complete the coordination sphere of the metal center. The trans angles of the metal center [N1C—Zn—O1B = 165.07 (9)°, O2B—Zn—O2A = 163.59 (9)° and O1A—Zn—O1W = 164.84 (8)°] indicate a deviation from the octahedral geometry. The asymmetric unit contains also one free 4,4'-bipyridine and two water molecules uncoordinated, which play a key role in the crystal packing. A 2D supramolecular network formed by O—H···N and O—H···O hydrogen bonds ([-1 0 1] and [-1 1 -1] directions) is observed (Figure 2, table 2).

Related literature top

For biological applications of naphthoquinone-bearing complexes, see: Francisco et al. (2008); Bustamante et al. (2009); Neves et al. (2009). For reference structural data, see: Garge et al. (1990); Beni et al. (2006).

Experimental top

All the reactants and solvents were obtained commercially, and used without any previous treatment. A methanolic solution (15 ml) containing lawsone (2 mmol, 0.3492 g) and triethylamine (2 mmol, 0.27 ml) was poured to a methanolic solution (10 ml) of zinc acetate (1 mmol, 0.2195 g) under magnetic stirring. To the reaction mixture, 4,4'-bipyridine (3 mmol, 0.4686 g) previously dissolved in 5 ml of MeOH was added dropwise. After 3 h at room temperature, a precipitate was formed and removed by filtration. The main solution was left undisturbed for a few days to produce red single crystals.

Refinement top

The positions of H atoms of the water molecules were found in difference maps and their positions fixed. Other H atoms were placed in calculated idealized positions, and refined as riding to their carrier atoms, with C—H bond lengths fixed to 0.93 Å. All H atoms were refined with fixed individual displacement parameters: Uiso(H) = 1.2 Ueq(carrier C) or 1.5 Ueq (carrier O).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bonds observed in the crystal packing. Symmetry codes: (i) -1+x, y, 1+z; (ii) x-1, y, 1+z; (iii) -x, -y, 1-z; (iv) -1+x, y, z.
Aqua(4,4'-bipyridine-κN)bis(1,4-dioxo-1,4-dihydronaphthalen-2-olato- κ2O1,O2)zinc 4,4'-bipyridine monosolvate dihydrate top
Crystal data top
[Zn(C10H5O3)2(C10H8N2)(H2O)]·C10H8N2·2H2OV = 1764.8 (6) Å3
Mr = 778.07Z = 2
Triclinic, P1F(000) = 804
Hall symbol: -P 1Dx = 1.464 Mg m3
a = 8.1448 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.179 (3) Åθ = 3–25.0°
c = 15.910 (3) ŵ = 0.76 mm1
α = 73.90 (3)°T = 293 K
β = 88.59 (3)°Prism, red
γ = 89.53 (3)°0.18 × 0.12 × 0.10 mm
Data collection top
Nonius Kappa CCD
diffractometer
6230 independent reflections
Radiation source: Enraf Nonius FR5903619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3°
ω scansh = 99
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1616
Tmin = 0.983, Tmax = 1.000l = 1818
11283 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0191P)2]
where P = (Fo2 + 2Fc2)/3
6230 reflections(Δ/σ)max < 0.001
487 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.42 e Å3
0 constraints
Crystal data top
[Zn(C10H5O3)2(C10H8N2)(H2O)]·C10H8N2·2H2Oγ = 89.53 (3)°
Mr = 778.07V = 1764.8 (6) Å3
Triclinic, P1Z = 2
a = 8.1448 (16) ÅMo Kα radiation
b = 14.179 (3) ŵ = 0.76 mm1
c = 15.910 (3) ÅT = 293 K
α = 73.90 (3)°0.18 × 0.12 × 0.10 mm
β = 88.59 (3)°
Data collection top
Nonius Kappa CCD
diffractometer
6230 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3619 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 1.000Rint = 0.060
11283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.91Δρmax = 0.26 e Å3
6230 reflectionsΔρmin = 0.42 e Å3
487 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.14452 (5)0.16078 (3)0.46808 (3)0.03812 (13)
O1A0.3920 (3)0.22621 (16)0.48400 (14)0.0428 (6)
O1B0.0717 (3)0.22033 (16)0.58312 (15)0.0524 (7)
O2B0.1622 (3)0.04451 (14)0.57458 (14)0.0392 (6)
O3B0.0658 (3)0.07129 (18)0.87628 (16)0.0629 (8)
O1W0.0919 (3)0.14001 (15)0.43888 (14)0.0427 (6)
H11W0.16010.18050.40870.064*
H21W0.13840.08330.45010.064*
O3A0.3758 (3)0.60568 (17)0.31208 (19)0.0729 (9)
O2A0.1332 (3)0.29577 (15)0.38886 (14)0.0402 (6)
N1C0.2534 (3)0.08372 (19)0.38604 (17)0.0371 (7)
N2C0.6194 (4)0.1645 (3)0.1018 (2)0.0692 (10)
C1B0.0663 (4)0.1554 (2)0.6521 (2)0.0374 (8)
C1A0.3950 (4)0.3134 (2)0.4424 (2)0.0326 (8)
C2B0.1194 (4)0.0545 (2)0.6502 (2)0.0348 (8)
C2A0.2478 (4)0.3562 (2)0.39009 (19)0.0317 (8)
C3B0.1187 (4)0.0179 (2)0.7269 (2)0.0406 (9)
H3B0.15350.08020.72580.049*
C3A0.2465 (4)0.4537 (2)0.3494 (2)0.0398 (9)
H3A0.15290.48030.31940.048*
C4B0.0681 (4)0.0039 (3)0.8082 (2)0.0427 (9)
C4A0.3798 (5)0.5179 (2)0.3498 (2)0.0441 (9)
C5B0.0437 (5)0.1123 (3)0.8874 (2)0.0604 (11)
H5B0.04650.06070.93840.073*
C5A0.6636 (5)0.5338 (3)0.3969 (2)0.0486 (10)
H5A0.65890.60050.36840.058*
C6B0.0939 (6)0.2042 (3)0.8899 (3)0.0767 (15)
H6B0.12830.21490.94270.092*
C6A0.8045 (5)0.4939 (3)0.4380 (3)0.0547 (10)
H6A0.89540.53360.43640.066*
C7B0.0933 (6)0.2801 (3)0.8148 (3)0.0837 (16)
H7B0.12840.34210.81660.1*
C7A0.8122 (5)0.3962 (3)0.4812 (2)0.0533 (10)
H7A0.90820.37010.50890.064*
C8B0.0413 (5)0.2652 (3)0.7372 (2)0.0634 (12)
H8B0.04180.31690.68630.076*
C8A0.6787 (4)0.3363 (3)0.4839 (2)0.0435 (9)
H8A0.6840.26990.51350.052*
C9B0.0123 (4)0.1728 (2)0.7340 (2)0.0403 (9)
C9A0.5369 (4)0.3756 (2)0.4421 (2)0.0322 (8)
C10B0.0103 (4)0.0959 (2)0.8108 (2)0.0427 (9)
C10A0.5293 (4)0.4749 (2)0.3980 (2)0.0369 (8)
C11C0.2349 (4)0.1148 (2)0.2998 (2)0.0419 (9)
H11C0.17150.17060.27740.05*
C12C0.3042 (4)0.0690 (2)0.2422 (2)0.0418 (9)
H12C0.28790.0940.18250.05*
C13C0.3984 (4)0.0143 (2)0.2733 (2)0.0363 (8)
C14C0.4180 (4)0.0468 (2)0.3625 (2)0.0414 (9)
H14C0.480.10270.38660.05*
C15C0.3453 (4)0.0038 (2)0.4153 (2)0.0413 (9)
H15C0.36110.0190.47520.05*
C16C0.6154 (5)0.0671 (3)0.0819 (3)0.0632 (12)
H16C0.66450.03180.02930.076*
C17C0.5427 (5)0.0152 (3)0.1345 (2)0.0519 (10)
H17C0.53920.05310.11650.062*
C18C0.4754 (4)0.0665 (3)0.2144 (2)0.0429 (9)
C19C0.4820 (5)0.1670 (3)0.2350 (3)0.0605 (11)
H19C0.43780.20450.28810.073*
C20C0.5531 (6)0.2123 (3)0.1780 (3)0.0744 (13)
H20C0.55490.28050.19370.089*
N1D0.7606 (4)0.2677 (2)0.29807 (19)0.0489 (8)
N2D0.2179 (5)0.5997 (3)0.0219 (2)0.0646 (10)
C11D0.7972 (5)0.3623 (3)0.2675 (2)0.0503 (10)
H11D0.89640.38360.28340.06*
C12D0.6980 (5)0.4307 (3)0.2138 (2)0.0471 (9)
H12D0.72980.49620.19530.056*
C13D0.5517 (4)0.4021 (2)0.1872 (2)0.0404 (9)
C14D0.5162 (5)0.3032 (3)0.2167 (2)0.0531 (10)
H14D0.42080.27890.19950.064*
C15D0.6214 (5)0.2416 (3)0.2708 (3)0.0561 (10)
H15D0.59260.17560.29020.067*
C16D0.3735 (6)0.6222 (3)0.0260 (2)0.0621 (12)
H16D0.40970.68280.00880.074*
C17D0.4865 (5)0.5621 (3)0.0784 (2)0.0518 (10)
H17D0.59510.5820.07780.062*
C18D0.4373 (5)0.4722 (2)0.1317 (2)0.0421 (9)
C19D0.2736 (5)0.4492 (3)0.1290 (2)0.0543 (10)
H19D0.23320.38990.16430.065*
C20D0.1709 (5)0.5133 (3)0.0747 (3)0.0620 (11)
H20D0.06120.49560.07450.074*
O2W0.3076 (4)0.2352 (2)0.04695 (19)0.0889 (10)
H12W0.22240.26860.03640.133*
H22W0.31410.19710.01560.133*
O3W0.0082 (4)0.27380 (19)0.10522 (18)0.0754 (9)
H13W0.02450.21550.10710.113*
H23W0.0620.31040.06540.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0433 (3)0.0308 (2)0.0384 (2)0.00580 (18)0.00147 (19)0.00647 (18)
O1A0.0413 (15)0.0313 (13)0.0491 (15)0.0053 (11)0.0109 (11)0.0012 (11)
O1B0.080 (2)0.0336 (14)0.0383 (15)0.0074 (13)0.0006 (13)0.0022 (12)
O2B0.0483 (15)0.0304 (13)0.0379 (14)0.0036 (11)0.0020 (11)0.0081 (11)
O3B0.091 (2)0.0451 (16)0.0410 (15)0.0023 (15)0.0005 (14)0.0076 (13)
O1W0.0348 (14)0.0346 (13)0.0569 (15)0.0066 (11)0.0068 (11)0.0090 (11)
O3A0.065 (2)0.0290 (15)0.109 (2)0.0066 (14)0.0223 (17)0.0074 (15)
O2A0.0391 (15)0.0342 (13)0.0432 (14)0.0077 (11)0.0079 (11)0.0031 (11)
N1C0.0349 (17)0.0341 (16)0.0407 (18)0.0049 (13)0.0024 (14)0.0075 (14)
N2C0.067 (3)0.078 (3)0.071 (3)0.005 (2)0.006 (2)0.035 (2)
C1B0.038 (2)0.040 (2)0.033 (2)0.0025 (17)0.0055 (16)0.0066 (17)
C1A0.037 (2)0.0290 (19)0.0322 (18)0.0000 (16)0.0002 (15)0.0096 (15)
C2B0.031 (2)0.0321 (19)0.040 (2)0.0036 (15)0.0031 (16)0.0068 (17)
C2A0.032 (2)0.0325 (19)0.0307 (19)0.0017 (16)0.0005 (15)0.0088 (15)
C3B0.046 (2)0.0296 (19)0.044 (2)0.0029 (16)0.0074 (17)0.0061 (17)
C3A0.034 (2)0.036 (2)0.048 (2)0.0066 (17)0.0099 (17)0.0077 (17)
C4B0.046 (2)0.041 (2)0.037 (2)0.0053 (18)0.0025 (18)0.0040 (18)
C4A0.049 (2)0.030 (2)0.050 (2)0.0027 (18)0.0041 (19)0.0050 (17)
C5B0.074 (3)0.067 (3)0.035 (2)0.018 (2)0.005 (2)0.005 (2)
C5A0.057 (3)0.035 (2)0.055 (2)0.0107 (19)0.002 (2)0.0137 (18)
C6B0.102 (4)0.089 (3)0.042 (3)0.042 (3)0.002 (2)0.025 (3)
C6A0.041 (2)0.060 (3)0.068 (3)0.011 (2)0.013 (2)0.024 (2)
C7B0.133 (5)0.067 (3)0.056 (3)0.044 (3)0.010 (3)0.024 (3)
C7A0.038 (2)0.064 (3)0.062 (3)0.002 (2)0.014 (2)0.022 (2)
C8B0.097 (3)0.051 (3)0.042 (2)0.025 (2)0.005 (2)0.014 (2)
C8A0.041 (2)0.042 (2)0.050 (2)0.0005 (18)0.0079 (18)0.0144 (18)
C9B0.047 (2)0.038 (2)0.035 (2)0.0049 (17)0.0040 (17)0.0086 (16)
C9A0.031 (2)0.0296 (18)0.0362 (19)0.0034 (15)0.0009 (15)0.0092 (15)
C10B0.042 (2)0.046 (2)0.038 (2)0.0049 (18)0.0042 (17)0.0075 (18)
C10A0.038 (2)0.0345 (19)0.040 (2)0.0068 (17)0.0032 (17)0.0147 (16)
C11C0.042 (2)0.036 (2)0.045 (2)0.0004 (17)0.0039 (18)0.0052 (18)
C12C0.047 (2)0.042 (2)0.034 (2)0.0040 (18)0.0035 (17)0.0055 (17)
C13C0.034 (2)0.0338 (19)0.040 (2)0.0080 (16)0.0000 (16)0.0093 (16)
C14C0.039 (2)0.039 (2)0.043 (2)0.0036 (17)0.0017 (17)0.0064 (18)
C15C0.037 (2)0.049 (2)0.035 (2)0.0024 (18)0.0038 (17)0.0040 (17)
C16C0.053 (3)0.087 (3)0.046 (2)0.002 (2)0.009 (2)0.013 (2)
C17C0.055 (3)0.057 (2)0.044 (2)0.001 (2)0.002 (2)0.014 (2)
C18C0.037 (2)0.046 (2)0.046 (2)0.0044 (17)0.0052 (18)0.0137 (19)
C19C0.071 (3)0.046 (2)0.065 (3)0.005 (2)0.014 (2)0.017 (2)
C20C0.082 (3)0.060 (3)0.088 (4)0.002 (2)0.017 (3)0.033 (3)
N1D0.047 (2)0.049 (2)0.0489 (19)0.0013 (16)0.0065 (16)0.0111 (16)
N2D0.076 (3)0.063 (2)0.055 (2)0.021 (2)0.013 (2)0.0169 (19)
C11D0.045 (2)0.053 (3)0.053 (2)0.007 (2)0.0088 (19)0.016 (2)
C12D0.055 (3)0.039 (2)0.045 (2)0.0064 (19)0.0050 (19)0.0068 (18)
C13D0.045 (2)0.041 (2)0.036 (2)0.0044 (18)0.0026 (17)0.0123 (17)
C14D0.043 (2)0.040 (2)0.072 (3)0.0028 (19)0.015 (2)0.008 (2)
C15D0.050 (3)0.038 (2)0.075 (3)0.003 (2)0.011 (2)0.007 (2)
C16D0.089 (4)0.043 (2)0.050 (3)0.013 (3)0.004 (3)0.008 (2)
C17D0.059 (3)0.044 (2)0.053 (2)0.003 (2)0.002 (2)0.014 (2)
C18D0.048 (3)0.041 (2)0.037 (2)0.0020 (19)0.0007 (18)0.0122 (17)
C19D0.057 (3)0.050 (2)0.053 (2)0.003 (2)0.011 (2)0.008 (2)
C20D0.062 (3)0.067 (3)0.058 (3)0.006 (2)0.016 (2)0.016 (2)
O2W0.087 (2)0.108 (3)0.080 (2)0.0004 (19)0.0010 (18)0.039 (2)
O3W0.083 (2)0.0636 (19)0.080 (2)0.0080 (16)0.0140 (17)0.0199 (16)
Geometric parameters (Å, º) top
Zn—O2A1.981 (2)C8A—C9A1.381 (4)
Zn—O2B2.017 (2)C8A—H8A0.93
Zn—O1W2.034 (2)C9B—C10B1.394 (4)
Zn—N1C2.098 (3)C9A—C10A1.391 (4)
Zn—O1A2.275 (2)C11C—C12C1.370 (4)
Zn—O1B2.283 (2)C11C—H11C0.93
O1A—C1A1.230 (3)C12C—C13C1.382 (4)
O1B—C1B1.221 (4)C12C—H12C0.93
O2B—C2B1.290 (4)C13C—C14C1.378 (4)
O3B—C4B1.230 (4)C13C—C18C1.473 (4)
O1W—H11W0.8505C14C—C15C1.369 (4)
O1W—H21W0.8632C14C—H14C0.93
O3A—C4A1.223 (4)C15C—H15C0.93
O2A—C2A1.277 (4)C16C—C17C1.380 (5)
N1C—C15C1.331 (4)C16C—H16C0.93
N1C—C11C1.332 (4)C17C—C18C1.380 (5)
N2C—C20C1.319 (5)C17C—H17C0.93
N2C—C16C1.328 (5)C18C—C19C1.372 (5)
C1B—C9B1.450 (4)C19C—C20C1.364 (5)
C1B—C2B1.499 (4)C19C—H19C0.93
C1A—C9A1.458 (4)C20C—H20C0.93
C1A—C2A1.502 (4)N1D—C15D1.316 (4)
C2B—C3B1.359 (4)N1D—C11D1.327 (4)
C2A—C3A1.354 (4)N2D—C16D1.317 (5)
C3B—C4B1.413 (4)N2D—C20D1.332 (5)
C3B—H3B0.93C11D—C12D1.373 (4)
C3A—C4A1.424 (5)C11D—H11D0.93
C3A—H3A0.93C12D—C13D1.375 (5)
C4B—C10B1.499 (5)C12D—H12D0.93
C4A—C10A1.489 (4)C13D—C14D1.380 (5)
C5B—C10B1.364 (5)C13D—C18D1.475 (5)
C5B—C6B1.373 (5)C14D—C15D1.358 (5)
C5B—H5B0.93C14D—H14D0.93
C5A—C6A1.373 (5)C15D—H15D0.93
C5A—C10A1.378 (5)C16D—C17D1.378 (5)
C5A—H5A0.93C16D—H16D0.93
C6B—C7B1.368 (5)C17D—C18D1.377 (5)
C6B—H6B0.93C17D—H17D0.93
C6A—C7A1.366 (5)C18D—C19D1.380 (5)
C6A—H6A0.93C19D—C20D1.364 (5)
C7B—C8B1.366 (5)C19D—H19D0.93
C7B—H7B0.93C20D—H20D0.93
C7A—C8A1.379 (5)O2W—H12W0.83
C7A—H7A0.93O2W—H22W0.83
C8B—C9B1.390 (4)O3W—H13W0.83
C8B—H8B0.93O3W—H23W0.83
O2A—Zn—O2B163.59 (9)C8B—C9B—C1B121.0 (3)
O2A—Zn—O1W88.76 (10)C10B—C9B—C1B120.0 (3)
O2B—Zn—O1W97.85 (9)C8A—C9A—C10A120.0 (3)
O2A—Zn—N1C101.78 (10)C8A—C9A—C1A120.6 (3)
O2B—Zn—N1C92.45 (10)C10A—C9A—C1A119.4 (3)
O1W—Zn—N1C96.25 (10)C5B—C10B—C9B119.7 (3)
O2A—Zn—O1A76.55 (9)C5B—C10B—C4B120.8 (3)
O2B—Zn—O1A95.40 (9)C9B—C10B—C4B119.5 (3)
O1W—Zn—O1A164.84 (8)C5A—C10A—C9A119.5 (3)
N1C—Zn—O1A90.48 (9)C5A—C10A—C4A119.6 (3)
O2A—Zn—O1B89.43 (9)C9A—C10A—C4A120.8 (3)
O2B—Zn—O1B75.22 (8)N1C—C11C—C12C123.5 (3)
O1W—Zn—O1B93.79 (9)N1C—C11C—H11C118.2
N1C—Zn—O1B165.07 (9)C12C—C11C—H11C118.2
O1A—Zn—O1B82.50 (9)C11C—C12C—C13C119.7 (3)
C1A—O1A—Zn109.5 (2)C11C—C12C—H12C120.2
C1B—O1B—Zn111.8 (2)C13C—C12C—H12C120.2
C2B—O2B—Zn119.13 (18)C14C—C13C—C12C117.0 (3)
Zn—O1W—H11W129.9C14C—C13C—C18C121.0 (3)
Zn—O1W—H21W124C12C—C13C—C18C121.9 (3)
H11W—O1W—H21W105.6C15C—C14C—C13C119.4 (3)
C2A—O2A—Zn119.0 (2)C15C—C14C—H14C120.3
C15C—N1C—C11C116.3 (3)C13C—C14C—H14C120.3
C15C—N1C—Zn123.3 (2)N1C—C15C—C14C124.0 (3)
C11C—N1C—Zn120.3 (2)N1C—C15C—H15C118
C20C—N2C—C16C116.4 (4)C14C—C15C—H15C118
O1B—C1B—C9B122.6 (3)N2C—C16C—C17C124.0 (4)
O1B—C1B—C2B117.5 (3)N2C—C16C—H16C118
C9B—C1B—C2B119.8 (3)C17C—C16C—H16C118
O1A—C1A—C9A122.0 (3)C18C—C17C—C16C118.6 (4)
O1A—C1A—C2A118.5 (3)C18C—C17C—H17C120.7
C9A—C1A—C2A119.4 (3)C16C—C17C—H17C120.7
O2B—C2B—C3B125.7 (3)C19C—C18C—C17C117.0 (3)
O2B—C2B—C1B116.1 (3)C19C—C18C—C13C122.3 (3)
C3B—C2B—C1B118.2 (3)C17C—C18C—C13C120.7 (3)
O2A—C2A—C3A125.8 (3)C20C—C19C—C18C120.3 (4)
O2A—C2A—C1A115.8 (3)C20C—C19C—H19C119.9
C3A—C2A—C1A118.4 (3)C18C—C19C—H19C119.9
C2B—C3B—C4B123.7 (3)N2C—C20C—C19C123.6 (4)
C2B—C3B—H3B118.1N2C—C20C—H20C118.2
C4B—C3B—H3B118.1C19C—C20C—H20C118.2
C2A—C3A—C4A124.0 (3)C15D—N1D—C11D115.0 (3)
C2A—C3A—H3A118C16D—N2D—C20D115.6 (4)
C4A—C3A—H3A118N1D—C11D—C12D124.2 (4)
O3B—C4B—C3B122.3 (3)N1D—C11D—H11D117.9
O3B—C4B—C10B118.9 (3)C12D—C11D—H11D117.9
C3B—C4B—C10B118.8 (3)C11D—C12D—C13D119.9 (3)
O3A—C4A—C3A122.7 (3)C11D—C12D—H12D120.1
O3A—C4A—C10A119.5 (3)C13D—C12D—H12D120.1
C3A—C4A—C10A117.8 (3)C12D—C13D—C14D115.9 (3)
C10B—C5B—C6B120.7 (4)C12D—C13D—C18D122.7 (3)
C10B—C5B—H5B119.7C14D—C13D—C18D121.4 (3)
C6B—C5B—H5B119.7C15D—C14D—C13D119.7 (4)
C6A—C5A—C10A120.0 (3)C15D—C14D—H14D120.2
C6A—C5A—H5A120C13D—C14D—H14D120.2
C10A—C5A—H5A120N1D—C15D—C14D125.3 (4)
C7B—C6B—C5B120.0 (4)N1D—C15D—H15D117.4
C7B—C6B—H6B120C14D—C15D—H15D117.4
C5B—C6B—H6B120N2D—C16D—C17D124.5 (4)
C7A—C6A—C5A120.6 (4)N2D—C16D—H16D117.8
C7A—C6A—H6A119.7C17D—C16D—H16D117.8
C5A—C6A—H6A119.7C18D—C17D—C16D119.5 (4)
C8B—C7B—C6B120.3 (4)C18D—C17D—H17D120.3
C8B—C7B—H7B119.8C16D—C17D—H17D120.3
C6B—C7B—H7B119.8C17D—C18D—C19D116.2 (3)
C6A—C7A—C8A120.4 (3)C17D—C18D—C13D122.8 (4)
C6A—C7A—H7A119.8C19D—C18D—C13D120.9 (3)
C8A—C7A—H7A119.8C20D—C19D—C18D120.1 (4)
C7B—C8B—C9B120.2 (4)C20D—C19D—H19D119.9
C7B—C8B—H8B119.9C18D—C19D—H19D119.9
C9B—C8B—H8B119.9N2D—C20D—C19D124.0 (4)
C7A—C8A—C9A119.5 (3)N2D—C20D—H20D118
C7A—C8A—H8A120.3C19D—C20D—H20D118
C9A—C8A—H8A120.3H12W—O2W—H22W110.0
C8B—C9B—C10B119.0 (3)H13W—O3W—H23W110.0
O2A—Zn—O1A—C1A5.02 (19)C7A—C8A—C9A—C1A178.7 (3)
O2B—Zn—O1A—C1A160.5 (2)O1A—C1A—C9A—C8A4.8 (5)
O1W—Zn—O1A—C1A9.6 (4)C2A—C1A—C9A—C8A174.8 (3)
N1C—Zn—O1A—C1A107.0 (2)O1A—C1A—C9A—C10A176.3 (3)
O1B—Zn—O1A—C1A86.2 (2)C2A—C1A—C9A—C10A4.2 (4)
O2A—Zn—O1B—C1B178.7 (2)C6B—C5B—C10B—C9B0.9 (6)
O2B—Zn—O1B—C1B4.6 (2)C6B—C5B—C10B—C4B178.9 (4)
O1W—Zn—O1B—C1B92.5 (2)C8B—C9B—C10B—C5B0.1 (5)
N1C—Zn—O1B—C1B39.7 (5)C1B—C9B—C10B—C5B178.7 (3)
O1A—Zn—O1B—C1B102.2 (2)C8B—C9B—C10B—C4B179.9 (3)
O2A—Zn—O2B—C2B24.9 (5)C1B—C9B—C10B—C4B1.5 (5)
O1W—Zn—O2B—C2B88.2 (2)O3B—C4B—C10B—C5B0.2 (5)
N1C—Zn—O2B—C2B175.2 (2)C3B—C4B—C10B—C5B178.3 (3)
O1A—Zn—O2B—C2B84.5 (2)O3B—C4B—C10B—C9B180.0 (3)
O1B—Zn—O2B—C2B3.7 (2)C3B—C4B—C10B—C9B1.9 (5)
O2B—Zn—O2A—C2A54.2 (4)C6A—C5A—C10A—C9A1.0 (5)
O1W—Zn—O2A—C2A168.4 (2)C6A—C5A—C10A—C4A177.2 (3)
N1C—Zn—O2A—C2A95.4 (2)C8A—C9A—C10A—C5A0.5 (5)
O1A—Zn—O2A—C2A7.8 (2)C1A—C9A—C10A—C5A179.4 (3)
O1B—Zn—O2A—C2A74.6 (2)C8A—C9A—C10A—C4A177.7 (3)
O2A—Zn—N1C—C15C151.6 (3)C1A—C9A—C10A—C4A1.2 (4)
O2B—Zn—N1C—C15C20.2 (3)O3A—C4A—C10A—C5A2.3 (5)
O1W—Zn—N1C—C15C118.4 (3)C3A—C4A—C10A—C5A177.3 (3)
O1A—Zn—N1C—C15C75.2 (3)O3A—C4A—C10A—C9A179.5 (3)
O1B—Zn—N1C—C15C13.6 (6)C3A—C4A—C10A—C9A1.0 (5)
O2A—Zn—N1C—C11C27.3 (3)C15C—N1C—C11C—C12C0.1 (5)
O2B—Zn—N1C—C11C161.0 (3)Zn—N1C—C11C—C12C179.1 (3)
O1W—Zn—N1C—C11C62.8 (3)N1C—C11C—C12C—C13C0.3 (5)
O1A—Zn—N1C—C11C103.6 (3)C11C—C12C—C13C—C14C0.3 (5)
O1B—Zn—N1C—C11C165.2 (3)C11C—C12C—C13C—C18C179.9 (3)
Zn—O1B—C1B—C9B175.7 (3)C12C—C13C—C14C—C15C0.2 (5)
Zn—O1B—C1B—C2B4.7 (4)C18C—C13C—C14C—C15C179.6 (3)
Zn—O1A—C1A—C9A178.3 (2)C11C—N1C—C15C—C14C0.7 (5)
Zn—O1A—C1A—C2A2.1 (3)Zn—N1C—C15C—C14C179.6 (3)
Zn—O2B—C2B—C3B177.4 (3)C13C—C14C—C15C—N1C0.7 (5)
Zn—O2B—C2B—C1B2.6 (4)C20C—N2C—C16C—C17C2.0 (6)
O1B—C1B—C2B—O2B1.9 (5)N2C—C16C—C17C—C18C2.7 (6)
C9B—C1B—C2B—O2B178.5 (3)C16C—C17C—C18C—C19C1.6 (5)
O1B—C1B—C2B—C3B178.1 (3)C16C—C17C—C18C—C13C179.2 (3)
C9B—C1B—C2B—C3B1.5 (5)C14C—C13C—C18C—C19C39.9 (5)
Zn—O2A—C2A—C3A170.3 (2)C12C—C13C—C18C—C19C140.3 (4)
Zn—O2A—C2A—C1A9.2 (3)C14C—C13C—C18C—C17C141.0 (4)
O1A—C1A—C2A—O2A4.1 (4)C12C—C13C—C18C—C17C38.8 (5)
C9A—C1A—C2A—O2A175.4 (3)C17C—C18C—C19C—C20C0.2 (6)
O1A—C1A—C2A—C3A175.4 (3)C13C—C18C—C19C—C20C179.3 (4)
C9A—C1A—C2A—C3A5.0 (4)C16C—N2C—C20C—C19C0.4 (7)
O2B—C2B—C3B—C4B178.9 (3)C18C—C19C—C20C—N2C0.5 (7)
C1B—C2B—C3B—C4B1.1 (5)C15D—N1D—C11D—C12D2.2 (5)
O2A—C2A—C3A—C4A177.6 (3)N1D—C11D—C12D—C13D1.2 (5)
C1A—C2A—C3A—C4A2.9 (5)C11D—C12D—C13D—C14D1.0 (5)
C2B—C3B—C4B—O3B178.6 (3)C11D—C12D—C13D—C18D178.2 (3)
C2B—C3B—C4B—C10B0.5 (5)C12D—C13D—C14D—C15D2.1 (5)
C2A—C3A—C4A—O3A179.5 (3)C18D—C13D—C14D—C15D177.1 (3)
C2A—C3A—C4A—C10A0.0 (5)C11D—N1D—C15D—C14D1.0 (6)
C10B—C5B—C6B—C7B1.3 (7)C13D—C14D—C15D—N1D1.1 (6)
C10A—C5A—C6A—C7A0.9 (5)C20D—N2D—C16D—C17D1.8 (5)
C5B—C6B—C7B—C8B0.6 (8)N2D—C16D—C17D—C18D0.8 (5)
C5A—C6A—C7A—C8A0.2 (6)C16D—C17D—C18D—C19D0.7 (5)
C6B—C7B—C8B—C9B0.4 (7)C16D—C17D—C18D—C13D177.7 (3)
C6A—C7A—C8A—C9A0.3 (5)C12D—C13D—C18D—C17D22.7 (5)
C7B—C8B—C9B—C10B0.8 (6)C14D—C13D—C18D—C17D158.1 (3)
C7B—C8B—C9B—C1B179.4 (4)C12D—C13D—C18D—C19D159.0 (3)
O1B—C1B—C9B—C8B2.0 (6)C14D—C13D—C18D—C19D20.2 (5)
C2B—C1B—C9B—C8B178.4 (3)C17D—C18D—C19D—C20D1.0 (5)
O1B—C1B—C9B—C10B179.4 (3)C13D—C18D—C19D—C20D177.4 (3)
C2B—C1B—C9B—C10B0.2 (5)C16D—N2D—C20D—C19D1.4 (6)
C7A—C8A—C9A—C10A0.2 (5)C18D—C19D—C20D—N2D0.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H12W···O3W0.832.162.814 (4)135
O1W—H11W···N1Di0.851.972.754 (4)153
O1W—H21W···O2Bii0.861.972.750 (3)150
O3W—H23W···N2Diii0.832.062.887 (4)173
O2W—H22W···N2Civ0.832.102.863 (4)152
O3W—H13W···O3Bii0.832.022.846 (4)175
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H5O3)2(C10H8N2)(H2O)]·C10H8N2·2H2O
Mr778.07
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1448 (16), 14.179 (3), 15.910 (3)
α, β, γ (°)73.90 (3), 88.59 (3), 89.53 (3)
V3)1764.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.983, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11283, 6230, 3619
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.089, 0.91
No. of reflections6230
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.42

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn—O2A1.981 (2)Zn—N1C2.098 (3)
Zn—O2B2.017 (2)Zn—O1A2.275 (2)
Zn—O1W2.034 (2)Zn—O1B2.283 (2)
O2A—Zn—O2B163.59 (9)O2A—Zn—O1A76.55 (9)
O2A—Zn—O1W88.76 (10)O2B—Zn—O1A95.40 (9)
O2B—Zn—O1W97.85 (9)O1W—Zn—O1A164.84 (8)
O2A—Zn—N1C101.78 (10)O2B—Zn—O1B75.22 (8)
O2B—Zn—N1C92.45 (10)N1C—Zn—O1B165.07 (9)
O1W—Zn—N1C96.25 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···N1Di0.851.972.754 (4)153
O1W—H21W···O2Bii0.861.972.750 (3)150
O3W—H23W···N2Diii0.832.062.887 (4)173
O2W—H22W···N2Civ0.832.102.863 (4)152
O3W—H13W···O3Bii0.832.022.846 (4)175
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by the Brazilian agencies Proppi-UFF, FAPERJ, CAPES and CNPq. The authors also thank the LDRX-UFF X-ray diffraction laboratory for the data collection.

References

First citationBeni, A., Carbonera, C., Dei, A., Létard, J.-F., Righini, R., Sangregorio, C. & Sorace, L. (2006). J. Braz. Chem. Soc. 17, 1522–1533.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBustamante, F. L. S., Souza, E. T., Lanznaster, M. & Scarpellini, M. (2009). Rev. Virtual de Quim. 1, 138–148.  CAS Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrancisco, A. I., Vargas, M. D., Carneiro, J. W. M., Lanznaster, M., Torres, J. C., Camara, C. A. & Pinto, A. C. (2008). J. Mol. Struct. 891, 228–232.  CrossRef CAS Google Scholar
First citationGarge, P., Chikate, R., Padhye, S., Savariault, J. M., De Loth, P. & Tuchagues, J. P. (1990). Inorg. Chem. 29, 3315–3320.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNeves, A. P., Barbosa, C. C., Greco, S. J., Vargas, M. D., Visentin, L. C., Pinheiro, C. B., Mangrich, A. S., Barbosa, J. P. & da Costa, G. L. (2009). J. Braz. Chem. Soc. 20, 712–727.  CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1489-m1490
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds