organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-[(2,3,3a,4,5,6,7,7a-Octa­hydro-1H-1,3-benzimidazole-1,3-di­yl)bis­­(methyl­ene)]bis­­(1H-benzotriazole)

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 15 September 2011; accepted 1 October 2011; online 29 October 2011)

The cyclo­hexane ring in the title compound, C21H24N8, adopts a chair conformation and the five-membered heterocyclic ring to which it is fused adopts a twist conformation on their common C—C bond. The substituents on the N atoms of the central five-membered heterocycle are arranged trans with respect to the central ring. The terminal benzotriazole rings are oriented at angles of 74.66 (8) and 84.18 (8)° with respect to the mean plane of the central heterocycle. The angle between the two benzotriazole rings is 30.80 (9)°. The bond lengths and angles are within normal ranges; the largest deviation from expecta­tion is for a long N—CH2 bond length [1.476 (2) Å] as a consequence of an anomeric effect. In the crystal, mol­ecules are connected by C—H⋯N hydrogen bonds.

Related literature

For general background to anomeric effects, see: Carey & Sundberg (2000[Carey, F. A. & Sundberg, R. J. (2000). Advanced Organic Chemistry, Part A, 4th ed. pp. 151-156. New York: Kluwer Academic Publishers.]). For related structures see: Rivera et al. (2011[Rivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o990.]); Wang et al. (2008[Wang, Y., Yin, M.-H. & Zhang, G.-F. (2008). Acta Cryst. E64, o735.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N8

  • Mr = 388.48

  • Monoclinic, P 21 /c

  • a = 11.9474 (2) Å

  • b = 5.9406 (1) Å

  • c = 27.3861 (4) Å

  • β = 90.861 (1)°

  • V = 1943.50 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 120 K

  • 0.31 × 0.18 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • 37999 measured reflections

  • 3461 independent reflections

  • 2990 reflections with I > 2σ(I)

  • Rint = 0.172

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 1.06

  • 3461 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7b⋯N1i 0.97 2.38 3.301 (2) 159
C15—H15b⋯N7ii 0.97 2.62 3.504 (2) 151
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Among the most thoroughly studied stereoelectronic effects, the interactions between lone pairs have attracted much interest. These interactions between a non bonded electron pair and antibonding σ* sigma bonds usually play a feature role in the preferred conformations of such systems (Carey & Sundberg, 2000). The data of the crystal structure of the title compound indicate the occurrence of a n(N)σ*(C—N) electron delocalization, characteristic of the anomeric effect, as evidenced by the lengthened bond N6—C15 [1.476 (2) Å], shortened bond C15—N5 [1.433 (2)] and distorted C—N—C bond angles, C8—N5—C14 = 106.11 (13)°, C8—N5—C15 = 115.53 (13)°, and C14—N5—C15 = 118.03 (14)°. These results exhibit the same pattern of C—N shortened bond lengths that the crystal structure of 1,3-bis[(1H-benzotriazol-1-yl)methyl]-2,3-dihydro-1H-benzimidazole recently reported (Rivera et al., 2011). The structural parameters suggest an increase in p-character of nitrogen and reduction in N-pyramidality. The title compound was obtained by the reaction of racemic cyclic aminal (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo-[8.8.1.18,17.02,7.011,16]icosane with two equivalents of benzotriazole. The molecular structure and atom-numbering scheme are shown in Fig. 1. The asymmetric unit comprises of one molecule of the title compound (Fig 1). The bond lengths (Allen et al., 1987) and angles are generally within normal ranges (Wang et al., 2008).

The cyclohexane ring adopts a chair conformation and the five-membered ring to which it is fused adopts a twist conformation on C9—C14 with Q(2) = 0.455 (2) Å and ϕ = 311.1 (2)° (Cremer & Pople, 1975) and a trans disubstitution. The benzotriazole rings (N1—N3/C1—C6; N6—N8/C16—C21) are essentially planar with the maximum deviations from planarity being 0.0220 (19) Å for atom C3 and -0.0161 (19) for atom C18. The central heterocyclic ring makes an angle of 74.66 (8)° and 84.18 (8)° with the planar benzotriazole rings. The angle between the two benzotriazole rings is 30.80 (9)°. The two exocyclic bonds of methylene carbon atoms occupy pseudo-axial positions.

The crystal structure contains an intermolecular C7—H7B···N1 hydrogen bond between one H atom of the N—CH2—N group (aminal group) and one N atom of the benzotriazole ring of neighboring molecule linking adjacent molecules to form a one-dimensional chain running parallel to the b axis (Fig. 2), and further linked by weak C15—H15B···N intermolecular interactions. The distance of 3.4502 (9) Å between the centroids of the rings N1/N2/N3/C6/C1 related by the symmetry code (-x, 2 - y, -z) suggests a possible ππ interaction in the crystal.

Related literature top

For general background to anomeric effects, see: Carey & Sundberg (2000). For related structures see: Rivera et al. (2011); Wang et al. (2008). For ring conformations, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A solution of (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo-[8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) in dioxane (3 ml) and water (4 ml), previously prepared following described procedures, was added dropwise in a dioxane solution (3 ml) containing two equivalents of benzotriazole (238 mg, 2.00 mmol) in a two-necked round-bottomed flask. The mixture was stirred for about 6 h. and then the solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 75%, m.p. = 424–425 K). Single crystals of the racemic title compound were grown from a chloroform solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

Refinement top

The quality of the crystals was very low. The selected crystal for measurement was the best one from several attempts. All H atoms were added in calculated positions and refined as riding with C–H distances of 0.93 or 0.97 Å. The isotropic atomic displacement parameters of H atoms were fixed to 1.2×Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along b axis.
1,1'-[(2,3,3a,4,5,6,7,7a-Octahydro-1H-1,3-benzimidazole-1,3- diyl)bis(methylene)]bis(1H-benzotriazole) top
Crystal data top
C21H24N8F(000) = 824
Mr = 388.48Dx = 1.328 Mg m3
Monoclinic, P21/cMelting point: 424 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.5418 Å
a = 11.9474 (2) ÅCell parameters from 13493 reflections
b = 5.9406 (1) Åθ = 3.2°
c = 27.3861 (4) ŵ = 0.68 mm1
β = 90.861 (1)°T = 120 K
V = 1943.50 (5) Å3Plate, colourless
Z = 40.31 × 0.18 × 0.11 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2990 reflections with I > 2σ(I)
Radiation source: Enhance Ultra (Cu) X-ray SourceRint = 0.172
Mirror monochromatorθmax = 67.1°, θmin = 3.2°
Detector resolution: 10.3784 pixels mm-1h = 1414
Rotation method data acquisition using ω scansk = 77
37999 measured reflectionsl = 3232
3461 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0756P)2 + 0.4705P]
where P = (Fo2 + 2Fc2)/3
3461 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.31 e Å3
0 constraints
Crystal data top
C21H24N8V = 1943.50 (5) Å3
Mr = 388.48Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.9474 (2) ŵ = 0.68 mm1
b = 5.9406 (1) ÅT = 120 K
c = 27.3861 (4) Å0.31 × 0.18 × 0.11 mm
β = 90.861 (1)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2990 reflections with I > 2σ(I)
37999 measured reflectionsRint = 0.172
3461 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
3461 reflectionsΔρmin = 0.31 e Å3
262 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06576 (12)1.3038 (2)0.03014 (5)0.0301 (4)
N20.06561 (12)1.1599 (2)0.06570 (5)0.0298 (3)
N30.12624 (11)0.9755 (2)0.05292 (5)0.0256 (3)
N40.21777 (12)0.7711 (2)0.12114 (5)0.0277 (3)
N50.34776 (11)0.9703 (2)0.16832 (5)0.0250 (3)
N60.31150 (11)0.9133 (2)0.25550 (5)0.0240 (3)
N70.34948 (11)0.7097 (3)0.27089 (5)0.0296 (4)
N80.27753 (12)0.6222 (3)0.30094 (5)0.0302 (3)
C10.12747 (13)1.2136 (3)0.00732 (6)0.0249 (4)
C20.14940 (14)1.3000 (3)0.05407 (6)0.0293 (4)
H20.12331.44060.06390.035*
C30.21134 (15)1.1660 (3)0.08439 (7)0.0332 (4)
H30.22661.21570.11580.040*
C40.25227 (15)0.9548 (3)0.06892 (7)0.0334 (4)
H40.29490.87050.09040.040*
C50.23166 (14)0.8690 (3)0.02351 (7)0.0299 (4)
H50.25910.72960.01360.036*
C60.16690 (13)1.0034 (3)0.00695 (6)0.0239 (4)
C70.12758 (14)0.7809 (3)0.08616 (7)0.0288 (4)
H7A0.05770.77970.10380.035*
H7B0.12960.64500.06660.035*
C80.22853 (13)0.9669 (3)0.15340 (6)0.0270 (4)
H8A0.18100.95090.18160.032*
H8B0.20831.10410.13620.032*
C90.33087 (14)0.7201 (3)0.10497 (6)0.0265 (4)
H90.35410.83390.08130.032*
C100.35246 (16)0.4874 (3)0.08427 (7)0.0350 (4)
H10A0.31260.46910.05340.042*
H10B0.32650.37300.10670.042*
C110.47850 (16)0.4632 (3)0.07680 (8)0.0391 (5)
H11A0.50170.56700.05150.047*
H11B0.49450.31170.06570.047*
C120.54586 (16)0.5107 (3)0.12368 (8)0.0391 (5)
H12A0.62510.50200.11670.047*
H12B0.52920.39560.14760.047*
C130.51985 (14)0.7429 (3)0.14530 (7)0.0338 (4)
H13A0.55900.76210.17630.041*
H13B0.54370.86070.12330.041*
C140.39463 (14)0.7551 (3)0.15242 (6)0.0265 (4)
H140.37280.63770.17550.032*
C150.37030 (13)1.0415 (3)0.21750 (6)0.0270 (4)
H15A0.34981.19890.22040.032*
H15B0.45021.03020.22380.032*
C160.21029 (13)0.9579 (3)0.27606 (6)0.0235 (4)
C170.13513 (14)1.1384 (3)0.27189 (6)0.0284 (4)
H170.14971.26360.25260.034*
C180.03858 (15)1.1180 (3)0.29813 (7)0.0333 (4)
H180.01441.23240.29600.040*
C190.01666 (14)0.9313 (3)0.32806 (6)0.0313 (4)
H190.04970.92670.34540.038*
C200.09064 (14)0.7563 (3)0.33234 (6)0.0297 (4)
H200.07620.63330.35230.036*
C210.18967 (14)0.7708 (3)0.30514 (6)0.0255 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0331 (8)0.0264 (8)0.0309 (8)0.0061 (6)0.0009 (6)0.0036 (6)
N20.0288 (7)0.0288 (8)0.0320 (8)0.0062 (6)0.0007 (6)0.0046 (6)
N30.0240 (7)0.0252 (7)0.0275 (8)0.0008 (5)0.0001 (6)0.0031 (6)
N40.0231 (7)0.0284 (8)0.0316 (8)0.0020 (5)0.0018 (6)0.0023 (6)
N50.0199 (7)0.0294 (8)0.0258 (8)0.0033 (5)0.0033 (5)0.0013 (6)
N60.0203 (6)0.0282 (7)0.0233 (7)0.0007 (5)0.0004 (5)0.0026 (5)
N70.0238 (7)0.0329 (8)0.0320 (8)0.0046 (6)0.0004 (6)0.0050 (6)
N80.0263 (7)0.0314 (8)0.0329 (8)0.0032 (6)0.0028 (6)0.0057 (6)
C10.0228 (8)0.0221 (8)0.0298 (9)0.0012 (6)0.0019 (6)0.0047 (6)
C20.0281 (8)0.0257 (9)0.0338 (10)0.0039 (7)0.0051 (7)0.0021 (7)
C30.0281 (9)0.0409 (10)0.0308 (9)0.0068 (7)0.0025 (7)0.0020 (8)
C40.0283 (9)0.0375 (10)0.0345 (10)0.0027 (7)0.0063 (7)0.0074 (8)
C50.0267 (8)0.0271 (9)0.0361 (10)0.0033 (7)0.0018 (7)0.0047 (7)
C60.0204 (7)0.0258 (8)0.0255 (9)0.0025 (6)0.0025 (6)0.0034 (6)
C70.0256 (8)0.0261 (9)0.0345 (10)0.0034 (6)0.0024 (7)0.0021 (7)
C80.0218 (8)0.0345 (9)0.0247 (9)0.0010 (7)0.0016 (6)0.0004 (7)
C90.0249 (8)0.0247 (9)0.0299 (9)0.0019 (6)0.0020 (7)0.0035 (7)
C100.0373 (10)0.0263 (9)0.0412 (11)0.0003 (7)0.0049 (8)0.0014 (8)
C110.0403 (11)0.0298 (10)0.0473 (12)0.0066 (8)0.0055 (9)0.0036 (8)
C120.0282 (9)0.0362 (11)0.0530 (13)0.0040 (8)0.0008 (8)0.0004 (9)
C130.0230 (9)0.0353 (10)0.0431 (11)0.0004 (7)0.0007 (7)0.0002 (8)
C140.0236 (8)0.0259 (9)0.0299 (9)0.0024 (6)0.0028 (7)0.0046 (7)
C150.0223 (8)0.0304 (9)0.0283 (9)0.0073 (6)0.0021 (6)0.0022 (7)
C160.0204 (8)0.0276 (9)0.0225 (8)0.0011 (6)0.0003 (6)0.0027 (6)
C170.0319 (9)0.0243 (9)0.0291 (9)0.0023 (7)0.0012 (7)0.0005 (7)
C180.0324 (9)0.0346 (10)0.0330 (10)0.0088 (7)0.0013 (7)0.0074 (7)
C190.0252 (8)0.0393 (10)0.0297 (10)0.0011 (7)0.0067 (7)0.0085 (7)
C200.0284 (9)0.0333 (10)0.0274 (9)0.0055 (7)0.0037 (7)0.0010 (7)
C210.0247 (8)0.0268 (9)0.0250 (9)0.0005 (6)0.0006 (6)0.0004 (6)
Geometric parameters (Å, º) top
N1—N21.296 (2)C8—H8B0.9700
N1—C11.380 (2)C9—C141.511 (2)
N2—N31.3619 (19)C9—C101.517 (2)
N3—C61.366 (2)C9—H90.9800
N3—C71.471 (2)C10—C111.529 (3)
N4—C71.432 (2)C10—H10A0.9700
N4—C91.460 (2)C10—H10B0.9700
N4—C81.465 (2)C11—C121.531 (3)
N5—C151.433 (2)C11—H11A0.9700
N5—C141.464 (2)C11—H11B0.9700
N5—C81.476 (2)C12—C131.535 (3)
N6—N71.357 (2)C12—H12A0.9700
N6—C161.367 (2)C12—H12B0.9700
N6—C151.476 (2)C13—C141.513 (2)
N7—N81.307 (2)C13—H13A0.9700
N8—C211.378 (2)C13—H13B0.9700
C1—C61.389 (2)C14—H140.9800
C1—C21.408 (2)C15—H15A0.9700
C2—C31.375 (3)C15—H15B0.9700
C2—H20.9300C16—C211.391 (2)
C3—C41.409 (3)C16—C171.402 (2)
C3—H30.9300C17—C181.374 (2)
C4—C51.370 (3)C17—H170.9300
C4—H40.9300C18—C191.406 (3)
C5—C61.397 (2)C18—H180.9300
C5—H50.9300C19—C201.369 (3)
C7—H7A0.9700C19—H190.9300
C7—H7B0.9700C20—C211.410 (2)
C8—H8A0.9700C20—H200.9300
N2—N1—C1108.00 (14)C9—C10—H10A110.1
N1—N2—N3109.32 (13)C11—C10—H10A110.1
N2—N3—C6109.70 (13)C9—C10—H10B110.1
N2—N3—C7118.30 (13)C11—C10—H10B110.1
C6—N3—C7131.64 (14)H10A—C10—H10B108.4
C7—N4—C9119.73 (14)C10—C11—C12112.13 (16)
C7—N4—C8115.44 (13)C10—C11—H11A109.2
C9—N4—C8105.94 (13)C12—C11—H11A109.2
C15—N5—C14118.03 (14)C10—C11—H11B109.2
C15—N5—C8115.53 (13)C12—C11—H11B109.2
C14—N5—C8106.11 (13)H11A—C11—H11B107.9
N7—N6—C16109.79 (13)C11—C12—C13112.45 (16)
N7—N6—C15121.24 (13)C11—C12—H12A109.1
C16—N6—C15128.57 (14)C13—C12—H12A109.1
N8—N7—N6109.28 (13)C11—C12—H12B109.1
N7—N8—C21107.87 (14)C13—C12—H12B109.1
N1—C1—C6108.83 (15)H12A—C12—H12B107.8
N1—C1—C2130.01 (16)C14—C13—C12107.41 (14)
C6—C1—C2121.12 (16)C14—C13—H13A110.2
C3—C2—C1116.57 (16)C12—C13—H13A110.2
C3—C2—H2121.7C14—C13—H13B110.2
C1—C2—H2121.7C12—C13—H13B110.2
C2—C3—C4121.44 (17)H13A—C13—H13B108.5
C2—C3—H3119.3N5—C14—C9100.73 (13)
C4—C3—H3119.3N5—C14—C13117.62 (14)
C5—C4—C3122.54 (17)C9—C14—C13111.67 (14)
C5—C4—H4118.7N5—C14—H14108.8
C3—C4—H4118.7C9—C14—H14108.8
C4—C5—C6115.99 (16)C13—C14—H14108.8
C4—C5—H5122.0N5—C15—N6115.18 (13)
C6—C5—H5122.0N5—C15—H15A108.5
N3—C6—C1104.14 (14)N6—C15—H15A108.5
N3—C6—C5133.54 (16)N5—C15—H15B108.5
C1—C6—C5122.31 (16)N6—C15—H15B108.5
N4—C7—N3116.54 (13)H15A—C15—H15B107.5
N4—C7—H7A108.2N6—C16—C21104.25 (14)
N3—C7—H7A108.2N6—C16—C17133.15 (15)
N4—C7—H7B108.2C21—C16—C17122.59 (15)
N3—C7—H7B108.2C18—C17—C16115.60 (16)
H7A—C7—H7B107.3C18—C17—H17122.2
N4—C8—N5104.68 (13)C16—C17—H17122.2
N4—C8—H8A110.8C17—C18—C19122.65 (16)
N5—C8—H8A110.8C17—C18—H18118.7
N4—C8—H8B110.8C19—C18—H18118.7
N5—C8—H8B110.8C20—C19—C18121.58 (16)
H8A—C8—H8B108.9C20—C19—H19119.2
N4—C9—C1499.64 (13)C18—C19—H19119.2
N4—C9—C10117.77 (14)C19—C20—C21117.01 (16)
C14—C9—C10111.14 (14)C19—C20—H20121.5
N4—C9—H9109.3C21—C20—H20121.5
C14—C9—H9109.3N8—C21—C16108.80 (14)
C10—C9—H9109.3N8—C21—C20130.64 (16)
C9—C10—C11107.98 (15)C16—C21—C20120.56 (15)
N3—C7—N4—C856.8 (4)C8—N5—C15—N655.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8a···N60.972.552.970 (2)106
C8—H8b···N30.972.582.995 (2)106
C7—H7b···N1i0.972.383.301 (2)159
C15—H15b···N7ii0.972.623.504 (2)151
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H24N8
Mr388.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.9474 (2), 5.9406 (1), 27.3861 (4)
β (°) 90.861 (1)
V3)1943.50 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.31 × 0.18 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
37999, 3461, 2990
Rint0.172
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.06
No. of reflections3461
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7b···N1i0.972.383.301 (2)159
C15—H15b···N7ii0.972.623.504 (2)151
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationCarey, F. A. & Sundberg, R. J. (2000). Advanced Organic Chemistry, Part A, 4th ed. pp. 151–156. New York: Kluwer Academic Publishers.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Yin, M.-H. & Zhang, G.-F. (2008). Acta Cryst. E64, o735.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds