metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The low-temperature structure of di­ethyl ether magnesium oxybromide

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 28 September 2011; accepted 21 October 2011; online 29 October 2011)

The crystal structure of the title compound, hexa-μ2-bromido-μ4-oxido-tetra­kis­[(diethyl ether)magnesium], [Mg4Br6O(C4H10O)4], determined from data measured at 173 K, differs from the previously known structure of diethyl ether magnesium oxybromide, which was determined from room-temperature data [Stucky & Rundle (1964[Stucky, G. & Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 4821-4825.]). J. Am. Chem. Soc. 86, 4821–4825]. The title compound crystallizes in the tetra­gonal space group I[\overline{4}], whereas the previously known structure crystallizes in a different tetra­gonal space group, namely P[\overline{4}]21c. Both molecules have crystallographic [\overline{4}] symmetry and show almost identical geometric parameters for the Mg, Br and O atoms. The crystal of the title compound turned out to be a merohedral twin emulating a structure with apparent Laue symmetry 4/mmm, whereas the correct Laue group is just 4/m. The fractional contribution of the minor twin component converged to 0.462 (1).

Related literature

For Mg–Br complexes, see: Lerner (2005[Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781-798.]); Lerner et al. (2003[Lerner, H.-W., Scholz, S., Bolte, M., Wiberg, N., Nöth, H. & Krossing, I. (2003). Eur. J. Inorg. Chem. pp. 666-670.]); Metzler et al. (1994[Metzler, N., Nöth, H., Schmidt, M. & Treitl, A. (1994). Z. Naturforsch. Teil B, 49, 1448-1451.]). For a polymorph of the title compound, see: Stucky & Rundle (1964[Stucky, G. & Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 4821-4825.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg4Br6O(C4H10O)4]

  • Mr = 889.18

  • Tetragonal, [I \overline 4]

  • a = 10.4630 (13) Å

  • c = 15.276 (2) Å

  • V = 1672.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.30 mm−1

  • T = 173 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan [MULABS (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])] Tmin = 0.169, Tmax = 0.269

  • 3746 measured reflections

  • 1479 independent reflections

  • 1455 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.08

  • 1479 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 689 Friedel pairs

  • Flack parameter: −0.02 (2)

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The solid-state structures of Mg–Br compounds feature coordination numbers of the Mg center from four as in [MgBr(SitBu3)(THF)]2 (Lerner et al., 2003; Lerner, 2005) to six as in [MgBr2(THF)4] (Metzler et al., 1994). Most of the Mg–Br compounds possess an octahedral coordination sphere which surrounds the Mg cation whereas only a few compounds are found in the Cambridge Structural Database (Allen, 2002) with five-coordinated Mg centers as found in the solid-state structure of the title compound. We report here the X-ray crystal structure analysis of [(MgOEt2)4Br6O], which could be isolated from a solution of C6F5MgBr in Et2O.

Data for the crystal structure of the title compound were collected at 173 K. It crystallizes in the tetragonal space group I4 with crystallographic 4 symmetry. The previously known polymorph (Stucky & Rundle, 1964) for which data were collected at room temperature crystallizes in the space group P421c and has crystallographic 4 symmetry, too. However, in the latter structure there is severe disorder of the C atoms, whereas in the title compound, no disorder was found. The geometric parameters involving Mg, Br and O atoms agree well in both structures.

Since the structures show striking similarities and were measured at different temperatures, a phase transition between them cannot be excluded.

Related literature top

For Mg–Br complexes, see: Lerner (2005); Lerner et al. (2003); Metzler et al. (1994). For a polymorph of the title compound, see: Stucky & Rundle (1964). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a suspension of Mg turnings (0.5 g, 20.2 mmol) in 25 ml Et2O, 2.3 ml C6F5Br is added dropwise. The reaction starts when 0.3 ml of C6F5Br have been added. The rest of C6F5Br is added dropwise at such a rate that the reaction mixture remains at its boiling point and refluxing is continued for 1 h until the magnesium turnings have dissolved completely. During the storing of this solution for 3 weeks, colorless crystals of the title compound were grown at room temperature.

Refinement top

H atoms could be located in a difference Fourier map, but they were refined using a riding model with isotropic displacement parameters Uiso(H) set to 1.2Ueq(Cmethylene) and C—H = 0.99 Å or Uiso(H) set to 1.5Ueq(Cmethyl) and C—H = 0.98 Å. The crystal turned out to be a merohedral twin emulating a structure with Laue symmetry 4/mmm. The twin law (0 1 0/1 0 0/0 0 1) is a twofold rotation about the diagonal between the a and b axis and the fractional contribution of the minor twin component refined to 0.462 (1).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with displacement ellipsoids at the 50% probability level. H atoms are omitted for clarity. Symmetry operators for generating equivalent atoms: (A): 1 - x, -y z; (B): 1/2 + y, 1/2 - x, 1/2 - z; (C): 1/2 - y, -1/2 + x, 1/2 - z.
hexa-µ2-bromido-µ4-oxido-tetrakis[(diethyl ether)magnesium] top
Crystal data top
[Mg4Br6O(C4H10O)4]Dx = 1.766 Mg m3
Mr = 889.18Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 3746 reflections
Hall symbol: I -4θ = 3.8–25.6°
a = 10.4630 (13) ŵ = 7.30 mm1
c = 15.276 (2) ÅT = 173 K
V = 1672.3 (4) Å3Block, colourless
Z = 20.25 × 0.22 × 0.18 mm
F(000) = 868
Data collection top
Stoe IPDS II two-circle
diffractometer
1479 independent reflections
Radiation source: fine-focus sealed tube1455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.3°, θmin = 3.8°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1212
Tmin = 0.169, Tmax = 0.269k = 812
3746 measured reflectionsl = 1318
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.284P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.62 e Å3
1479 reflectionsΔρmin = 0.56 e Å3
73 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0036 (4)
0 constraintsAbsolute structure: Flack (1983), with 689 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Secondary atom site location: difference Fourier map
Crystal data top
[Mg4Br6O(C4H10O)4]Z = 2
Mr = 889.18Mo Kα radiation
Tetragonal, I4µ = 7.30 mm1
a = 10.4630 (13) ÅT = 173 K
c = 15.276 (2) Å0.25 × 0.22 × 0.18 mm
V = 1672.3 (4) Å3
Data collection top
Stoe IPDS II two-circle
diffractometer
1479 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1455 reflections with I > 2σ(I)
Tmin = 0.169, Tmax = 0.269Rint = 0.044
3746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.62 e Å3
S = 1.08Δρmin = 0.56 e Å3
1479 reflectionsAbsolute structure: Flack (1983), with 689 Friedel pairs
73 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.40713 (19)0.12350 (19)0.32357 (13)0.0135 (5)
Br10.50000.00000.45892 (4)0.01815 (19)
Br20.19607 (5)0.04477 (5)0.24533 (6)0.02114 (18)
O10.50000.00000.25000.0120 (13)
C10.2012 (10)0.4180 (8)0.3236 (7)0.044 (2)
H1A0.19530.51130.31960.065*
H1B0.11610.38230.33480.065*
H1C0.23450.38360.26850.065*
C20.2906 (8)0.3818 (7)0.3982 (6)0.0286 (17)
H2A0.37590.41950.38750.034*
H2B0.25730.41740.45380.034*
O20.3026 (5)0.2433 (5)0.4064 (3)0.0210 (10)
C30.2032 (8)0.1864 (7)0.4613 (5)0.0289 (16)
H3A0.19320.09530.44530.035*
H3B0.12100.22990.44950.035*
C40.2326 (9)0.1958 (10)0.5579 (5)0.040 (2)
H4A0.16290.15700.59150.061*
H4B0.24130.28590.57440.061*
H4C0.31260.15070.57040.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0173 (10)0.0158 (10)0.0075 (9)0.0031 (8)0.0010 (8)0.0015 (8)
Br10.0265 (7)0.0226 (6)0.0054 (3)0.0057 (6)0.0000.000
Br20.0149 (3)0.0285 (3)0.0200 (3)0.0026 (2)0.0018 (4)0.0064 (4)
O10.0150 (18)0.0150 (18)0.006 (3)0.0000.0000.000
C10.056 (5)0.035 (4)0.040 (5)0.020 (4)0.001 (5)0.002 (4)
C20.038 (4)0.015 (3)0.032 (4)0.010 (3)0.004 (3)0.008 (3)
O20.024 (2)0.023 (2)0.015 (2)0.005 (2)0.008 (2)0.0037 (19)
C30.029 (4)0.027 (4)0.031 (4)0.009 (3)0.013 (3)0.001 (4)
C40.051 (6)0.056 (6)0.014 (4)0.027 (5)0.009 (3)0.004 (4)
Geometric parameters (Å, º) top
Mg1—O11.969 (2)C1—H1A0.9800
Mg1—O22.090 (5)C1—H1B0.9800
Mg1—Br2i2.597 (2)C1—H1C0.9800
Mg1—Br12.625 (2)C2—O21.460 (8)
Mg1—Br22.643 (2)C2—H2A0.9900
Mg1—Mg1i3.206 (3)C2—H2B0.9900
Mg1—Mg1ii3.206 (3)O2—C31.463 (9)
Mg1—Mg1iii3.233 (4)C3—C41.510 (11)
Br1—Mg1iii2.625 (2)C3—H3A0.9900
Br2—Mg1ii2.597 (2)C3—H3B0.9900
O1—Mg1iii1.9689 (19)C4—H4A0.9800
O1—Mg1i1.969 (2)C4—H4B0.9800
O1—Mg1ii1.969 (2)C4—H4C0.9800
C1—C21.523 (12)
O1—Mg1—O2175.84 (18)Mg1—O1—Mg1i109.01 (6)
O1—Mg1—Br2i88.40 (7)Mg1iii—O1—Mg1ii109.01 (6)
O2—Mg1—Br2i95.71 (15)Mg1—O1—Mg1ii109.01 (6)
O1—Mg1—Br186.78 (7)Mg1i—O1—Mg1ii110.39 (12)
O2—Mg1—Br190.70 (16)C2—C1—H1A109.5
Br2i—Mg1—Br1118.15 (8)C2—C1—H1B109.5
O1—Mg1—Br287.12 (7)H1A—C1—H1B109.5
O2—Mg1—Br291.33 (16)C2—C1—H1C109.5
Br2i—Mg1—Br2120.44 (8)H1A—C1—H1C109.5
Br1—Mg1—Br2120.81 (8)H1B—C1—H1C109.5
O1—Mg1—Mg1i35.49 (3)O2—C2—C1111.3 (6)
O2—Mg1—Mg1i148.63 (17)O2—C2—H2A109.4
Br2i—Mg1—Mg1i52.92 (7)C1—C2—H2A109.4
Br1—Mg1—Mg1i103.98 (7)O2—C2—H2B109.4
Br2—Mg1—Mg1i103.99 (9)C1—C2—H2B109.4
O1—Mg1—Mg1ii35.49 (3)H2A—C2—H2B108.0
O2—Mg1—Mg1ii142.70 (17)C2—O2—C3113.0 (6)
Br2i—Mg1—Mg1ii106.54 (9)C2—O2—Mg1126.1 (5)
Br1—Mg1—Mg1ii103.98 (7)C3—O2—Mg1118.4 (4)
Br2—Mg1—Mg1ii51.63 (7)O2—C3—C4112.9 (7)
Mg1i—Mg1—Mg1ii60.57 (7)O2—C3—H3A109.0
O1—Mg1—Mg1iii34.80 (6)C4—C3—H3A109.0
O2—Mg1—Mg1iii142.56 (16)O2—C3—H3B109.0
Br2i—Mg1—Mg1iii104.34 (9)C4—C3—H3B109.0
Br1—Mg1—Mg1iii51.98 (4)H3A—C3—H3B107.8
Br2—Mg1—Mg1iii104.66 (9)C3—C4—H4A109.5
Mg1i—Mg1—Mg1iii59.72 (4)C3—C4—H4B109.5
Mg1ii—Mg1—Mg1iii59.72 (4)H4A—C4—H4B109.5
Mg1iii—Br1—Mg176.05 (9)C3—C4—H4C109.5
Mg1ii—Br2—Mg175.45 (9)H4A—C4—H4C109.5
Mg1iii—O1—Mg1110.39 (12)H4B—C4—H4C109.5
Mg1iii—O1—Mg1i109.01 (6)
O1—Mg1—Br1—Mg1iii0.0Br2i—Mg1—O1—Mg1ii121.97 (10)
O2—Mg1—Br1—Mg1iii176.68 (18)Br1—Mg1—O1—Mg1ii119.72 (9)
Br2i—Mg1—Br1—Mg1iii86.46 (9)Br2—Mg1—O1—Mg1ii1.38 (7)
Br2—Mg1—Br1—Mg1iii84.71 (9)Mg1i—Mg1—O1—Mg1ii120.57 (8)
Mg1i—Mg1—Br1—Mg1iii31.31 (7)Mg1iii—Mg1—O1—Mg1ii119.72 (9)
Mg1ii—Mg1—Br1—Mg1iii31.31 (7)C1—C2—O2—C386.8 (8)
O1—Mg1—Br2—Mg1ii1.02 (5)C1—C2—O2—Mg174.9 (8)
O2—Mg1—Br2—Mg1ii175.11 (18)Br2i—Mg1—O2—C217.5 (6)
Br2i—Mg1—Br2—Mg1ii87.47 (9)Br1—Mg1—O2—C2135.9 (6)
Br1—Mg1—Br2—Mg1ii83.50 (9)Br2—Mg1—O2—C2103.3 (6)
Mg1i—Mg1—Br2—Mg1ii32.52 (7)Mg1i—Mg1—O2—C216.9 (8)
Mg1iii—Mg1—Br2—Mg1ii29.32 (7)Mg1ii—Mg1—O2—C2109.6 (6)
Br2i—Mg1—O1—Mg1iii118.31 (8)Mg1iii—Mg1—O2—C2140.2 (5)
Br1—Mg1—O1—Mg1iii0.0Br2i—Mg1—O2—C3178.3 (5)
Br2—Mg1—O1—Mg1iii121.10 (8)Br1—Mg1—O2—C363.3 (5)
Mg1i—Mg1—O1—Mg1iii119.72 (9)Br2—Mg1—O2—C357.5 (5)
Mg1ii—Mg1—O1—Mg1iii119.72 (9)Mg1i—Mg1—O2—C3177.7 (4)
Br2i—Mg1—O1—Mg1i1.40 (7)Mg1ii—Mg1—O2—C351.2 (6)
Br1—Mg1—O1—Mg1i119.72 (4)Mg1iii—Mg1—O2—C359.0 (6)
Br2—Mg1—O1—Mg1i119.19 (10)C2—O2—C3—C482.1 (8)
Mg1ii—Mg1—O1—Mg1i120.57 (8)Mg1—O2—C3—C4114.7 (6)
Mg1iii—Mg1—O1—Mg1i119.72 (9)
Symmetry codes: (i) y+1/2, x+1/2, z+1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mg4Br6O(C4H10O)4]
Mr889.18
Crystal system, space groupTetragonal, I4
Temperature (K)173
a, c (Å)10.4630 (13), 15.276 (2)
V3)1672.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)7.30
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.169, 0.269
No. of measured, independent and
observed [I > 2σ(I)] reflections
3746, 1479, 1455
Rint0.044
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.08
No. of reflections1479
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.56
Absolute structureFlack (1983), with 689 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798.  Web of Science CrossRef CAS Google Scholar
First citationLerner, H.-W., Scholz, S., Bolte, M., Wiberg, N., Nöth, H. & Krossing, I. (2003). Eur. J. Inorg. Chem. pp. 666–670.  CSD CrossRef Google Scholar
First citationMetzler, N., Nöth, H., Schmidt, M. & Treitl, A. (1994). Z. Naturforsch. Teil B, 49, 1448–1451.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStucky, G. & Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 4821–4825.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds