metal-organic compounds
The low-temperature structure of diethyl ether magnesium oxybromide
aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de
The μ2-bromido-μ4-oxido-tetrakis[(diethyl ether)magnesium], [Mg4Br6O(C4H10O)4], determined from data measured at 173 K, differs from the previously known structure of diethyl ether magnesium oxybromide, which was determined from room-temperature data [Stucky & Rundle (1964). J. Am. Chem. Soc. 86, 4821–4825]. The title compound crystallizes in the tetragonal I, whereas the previously known structure crystallizes in a different tetragonal namely P21c. Both molecules have crystallographic symmetry and show almost identical geometric parameters for the Mg, Br and O atoms. The crystal of the title compound turned out to be a twin emulating a structure with apparent Laue symmetry 4/mmm, whereas the correct Laue group is just 4/m. The fractional contribution of the minor twin component converged to 0.462 (1).
of the title compound, hexa-Related literature
For Mg–Br complexes, see: Lerner (2005); Lerner et al. (2003); Metzler et al. (1994). For a polymorph of the title compound, see: Stucky & Rundle (1964). For the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811043820/bh2385sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811043820/bh2385Isup2.hkl
To a suspension of Mg turnings (0.5 g, 20.2 mmol) in 25 ml Et2O, 2.3 ml C6F5Br is added dropwise. The reaction starts when 0.3 ml of C6F5Br have been added. The rest of C6F5Br is added dropwise at such a rate that the reaction mixture remains at its boiling point and refluxing is continued for 1 h until the magnesium turnings have dissolved completely. During the storing of this solution for 3 weeks, colorless crystals of the title compound were grown at room temperature.
H atoms could be located in a difference Fourier map, but they were refined using a riding model with isotropic displacement parameters Uiso(H) set to 1.2Ueq(Cmethylene) and C—H = 0.99 Å or Uiso(H) set to 1.5Ueq(Cmethyl) and C—H = 0.98 Å. The crystal turned out to be a
twin emulating a structure with Laue symmetry 4/mmm. The (0 1 0/1 0 0/0 0 1) is a twofold rotation about the diagonal between the a and b axis and the fractional contribution of the minor twin component refined to 0.462 (1).Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Mg4Br6O(C4H10O)4] | Dx = 1.766 Mg m−3 |
Mr = 889.18 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4 | Cell parameters from 3746 reflections |
Hall symbol: I -4 | θ = 3.8–25.6° |
a = 10.4630 (13) Å | µ = 7.30 mm−1 |
c = 15.276 (2) Å | T = 173 K |
V = 1672.3 (4) Å3 | Block, colourless |
Z = 2 | 0.25 × 0.22 × 0.18 mm |
F(000) = 868 |
Stoe IPDS II two-circle diffractometer | 1479 independent reflections |
Radiation source: fine-focus sealed tube | 1455 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scans | θmax = 25.3°, θmin = 3.8° |
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) | h = −12→12 |
Tmin = 0.169, Tmax = 0.269 | k = −8→12 |
3746 measured reflections | l = −13→18 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.284P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.067 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.62 e Å−3 |
1479 reflections | Δρmin = −0.56 e Å−3 |
73 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0036 (4) |
0 constraints | Absolute structure: Flack (1983), with 689 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (2) |
Secondary atom site location: difference Fourier map |
[Mg4Br6O(C4H10O)4] | Z = 2 |
Mr = 889.18 | Mo Kα radiation |
Tetragonal, I4 | µ = 7.30 mm−1 |
a = 10.4630 (13) Å | T = 173 K |
c = 15.276 (2) Å | 0.25 × 0.22 × 0.18 mm |
V = 1672.3 (4) Å3 |
Stoe IPDS II two-circle diffractometer | 1479 independent reflections |
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) | 1455 reflections with I > 2σ(I) |
Tmin = 0.169, Tmax = 0.269 | Rint = 0.044 |
3746 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.067 | Δρmax = 0.62 e Å−3 |
S = 1.08 | Δρmin = −0.56 e Å−3 |
1479 reflections | Absolute structure: Flack (1983), with 689 Friedel pairs |
73 parameters | Absolute structure parameter: −0.02 (2) |
0 restraints |
x | y | z | Uiso*/Ueq | ||
Mg1 | 0.40713 (19) | 0.12350 (19) | 0.32357 (13) | 0.0135 (5) | |
Br1 | 0.5000 | 0.0000 | 0.45892 (4) | 0.01815 (19) | |
Br2 | 0.19607 (5) | 0.04477 (5) | 0.24533 (6) | 0.02114 (18) | |
O1 | 0.5000 | 0.0000 | 0.2500 | 0.0120 (13) | |
C1 | 0.2012 (10) | 0.4180 (8) | 0.3236 (7) | 0.044 (2) | |
H1A | 0.1953 | 0.5113 | 0.3196 | 0.065* | |
H1B | 0.1161 | 0.3823 | 0.3348 | 0.065* | |
H1C | 0.2345 | 0.3836 | 0.2685 | 0.065* | |
C2 | 0.2906 (8) | 0.3818 (7) | 0.3982 (6) | 0.0286 (17) | |
H2A | 0.3759 | 0.4195 | 0.3875 | 0.034* | |
H2B | 0.2573 | 0.4174 | 0.4538 | 0.034* | |
O2 | 0.3026 (5) | 0.2433 (5) | 0.4064 (3) | 0.0210 (10) | |
C3 | 0.2032 (8) | 0.1864 (7) | 0.4613 (5) | 0.0289 (16) | |
H3A | 0.1932 | 0.0953 | 0.4453 | 0.035* | |
H3B | 0.1210 | 0.2299 | 0.4495 | 0.035* | |
C4 | 0.2326 (9) | 0.1958 (10) | 0.5579 (5) | 0.040 (2) | |
H4A | 0.1629 | 0.1570 | 0.5915 | 0.061* | |
H4B | 0.2413 | 0.2859 | 0.5744 | 0.061* | |
H4C | 0.3126 | 0.1507 | 0.5704 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0173 (10) | 0.0158 (10) | 0.0075 (9) | 0.0031 (8) | 0.0010 (8) | −0.0015 (8) |
Br1 | 0.0265 (7) | 0.0226 (6) | 0.0054 (3) | 0.0057 (6) | 0.000 | 0.000 |
Br2 | 0.0149 (3) | 0.0285 (3) | 0.0200 (3) | 0.0026 (2) | −0.0018 (4) | −0.0064 (4) |
O1 | 0.0150 (18) | 0.0150 (18) | 0.006 (3) | 0.000 | 0.000 | 0.000 |
C1 | 0.056 (5) | 0.035 (4) | 0.040 (5) | 0.020 (4) | −0.001 (5) | 0.002 (4) |
C2 | 0.038 (4) | 0.015 (3) | 0.032 (4) | 0.010 (3) | 0.004 (3) | −0.008 (3) |
O2 | 0.024 (2) | 0.023 (2) | 0.015 (2) | 0.005 (2) | 0.008 (2) | −0.0037 (19) |
C3 | 0.029 (4) | 0.027 (4) | 0.031 (4) | 0.009 (3) | 0.013 (3) | 0.001 (4) |
C4 | 0.051 (6) | 0.056 (6) | 0.014 (4) | 0.027 (5) | 0.009 (3) | −0.004 (4) |
Mg1—O1 | 1.969 (2) | C1—H1A | 0.9800 |
Mg1—O2 | 2.090 (5) | C1—H1B | 0.9800 |
Mg1—Br2i | 2.597 (2) | C1—H1C | 0.9800 |
Mg1—Br1 | 2.625 (2) | C2—O2 | 1.460 (8) |
Mg1—Br2 | 2.643 (2) | C2—H2A | 0.9900 |
Mg1—Mg1i | 3.206 (3) | C2—H2B | 0.9900 |
Mg1—Mg1ii | 3.206 (3) | O2—C3 | 1.463 (9) |
Mg1—Mg1iii | 3.233 (4) | C3—C4 | 1.510 (11) |
Br1—Mg1iii | 2.625 (2) | C3—H3A | 0.9900 |
Br2—Mg1ii | 2.597 (2) | C3—H3B | 0.9900 |
O1—Mg1iii | 1.9689 (19) | C4—H4A | 0.9800 |
O1—Mg1i | 1.969 (2) | C4—H4B | 0.9800 |
O1—Mg1ii | 1.969 (2) | C4—H4C | 0.9800 |
C1—C2 | 1.523 (12) | ||
O1—Mg1—O2 | 175.84 (18) | Mg1—O1—Mg1i | 109.01 (6) |
O1—Mg1—Br2i | 88.40 (7) | Mg1iii—O1—Mg1ii | 109.01 (6) |
O2—Mg1—Br2i | 95.71 (15) | Mg1—O1—Mg1ii | 109.01 (6) |
O1—Mg1—Br1 | 86.78 (7) | Mg1i—O1—Mg1ii | 110.39 (12) |
O2—Mg1—Br1 | 90.70 (16) | C2—C1—H1A | 109.5 |
Br2i—Mg1—Br1 | 118.15 (8) | C2—C1—H1B | 109.5 |
O1—Mg1—Br2 | 87.12 (7) | H1A—C1—H1B | 109.5 |
O2—Mg1—Br2 | 91.33 (16) | C2—C1—H1C | 109.5 |
Br2i—Mg1—Br2 | 120.44 (8) | H1A—C1—H1C | 109.5 |
Br1—Mg1—Br2 | 120.81 (8) | H1B—C1—H1C | 109.5 |
O1—Mg1—Mg1i | 35.49 (3) | O2—C2—C1 | 111.3 (6) |
O2—Mg1—Mg1i | 148.63 (17) | O2—C2—H2A | 109.4 |
Br2i—Mg1—Mg1i | 52.92 (7) | C1—C2—H2A | 109.4 |
Br1—Mg1—Mg1i | 103.98 (7) | O2—C2—H2B | 109.4 |
Br2—Mg1—Mg1i | 103.99 (9) | C1—C2—H2B | 109.4 |
O1—Mg1—Mg1ii | 35.49 (3) | H2A—C2—H2B | 108.0 |
O2—Mg1—Mg1ii | 142.70 (17) | C2—O2—C3 | 113.0 (6) |
Br2i—Mg1—Mg1ii | 106.54 (9) | C2—O2—Mg1 | 126.1 (5) |
Br1—Mg1—Mg1ii | 103.98 (7) | C3—O2—Mg1 | 118.4 (4) |
Br2—Mg1—Mg1ii | 51.63 (7) | O2—C3—C4 | 112.9 (7) |
Mg1i—Mg1—Mg1ii | 60.57 (7) | O2—C3—H3A | 109.0 |
O1—Mg1—Mg1iii | 34.80 (6) | C4—C3—H3A | 109.0 |
O2—Mg1—Mg1iii | 142.56 (16) | O2—C3—H3B | 109.0 |
Br2i—Mg1—Mg1iii | 104.34 (9) | C4—C3—H3B | 109.0 |
Br1—Mg1—Mg1iii | 51.98 (4) | H3A—C3—H3B | 107.8 |
Br2—Mg1—Mg1iii | 104.66 (9) | C3—C4—H4A | 109.5 |
Mg1i—Mg1—Mg1iii | 59.72 (4) | C3—C4—H4B | 109.5 |
Mg1ii—Mg1—Mg1iii | 59.72 (4) | H4A—C4—H4B | 109.5 |
Mg1iii—Br1—Mg1 | 76.05 (9) | C3—C4—H4C | 109.5 |
Mg1ii—Br2—Mg1 | 75.45 (9) | H4A—C4—H4C | 109.5 |
Mg1iii—O1—Mg1 | 110.39 (12) | H4B—C4—H4C | 109.5 |
Mg1iii—O1—Mg1i | 109.01 (6) | ||
O1—Mg1—Br1—Mg1iii | 0.0 | Br2i—Mg1—O1—Mg1ii | −121.97 (10) |
O2—Mg1—Br1—Mg1iii | 176.68 (18) | Br1—Mg1—O1—Mg1ii | 119.72 (9) |
Br2i—Mg1—Br1—Mg1iii | −86.46 (9) | Br2—Mg1—O1—Mg1ii | −1.38 (7) |
Br2—Mg1—Br1—Mg1iii | 84.71 (9) | Mg1i—Mg1—O1—Mg1ii | −120.57 (8) |
Mg1i—Mg1—Br1—Mg1iii | −31.31 (7) | Mg1iii—Mg1—O1—Mg1ii | 119.72 (9) |
Mg1ii—Mg1—Br1—Mg1iii | 31.31 (7) | C1—C2—O2—C3 | −86.8 (8) |
O1—Mg1—Br2—Mg1ii | 1.02 (5) | C1—C2—O2—Mg1 | 74.9 (8) |
O2—Mg1—Br2—Mg1ii | −175.11 (18) | Br2i—Mg1—O2—C2 | 17.5 (6) |
Br2i—Mg1—Br2—Mg1ii | 87.47 (9) | Br1—Mg1—O2—C2 | 135.9 (6) |
Br1—Mg1—Br2—Mg1ii | −83.50 (9) | Br2—Mg1—O2—C2 | −103.3 (6) |
Mg1i—Mg1—Br2—Mg1ii | 32.52 (7) | Mg1i—Mg1—O2—C2 | 16.9 (8) |
Mg1iii—Mg1—Br2—Mg1ii | −29.32 (7) | Mg1ii—Mg1—O2—C2 | −109.6 (6) |
Br2i—Mg1—O1—Mg1iii | 118.31 (8) | Mg1iii—Mg1—O2—C2 | 140.2 (5) |
Br1—Mg1—O1—Mg1iii | 0.0 | Br2i—Mg1—O2—C3 | 178.3 (5) |
Br2—Mg1—O1—Mg1iii | −121.10 (8) | Br1—Mg1—O2—C3 | −63.3 (5) |
Mg1i—Mg1—O1—Mg1iii | 119.72 (9) | Br2—Mg1—O2—C3 | 57.5 (5) |
Mg1ii—Mg1—O1—Mg1iii | −119.72 (9) | Mg1i—Mg1—O2—C3 | 177.7 (4) |
Br2i—Mg1—O1—Mg1i | −1.40 (7) | Mg1ii—Mg1—O2—C3 | 51.2 (6) |
Br1—Mg1—O1—Mg1i | −119.72 (4) | Mg1iii—Mg1—O2—C3 | −59.0 (6) |
Br2—Mg1—O1—Mg1i | 119.19 (10) | C2—O2—C3—C4 | −82.1 (8) |
Mg1ii—Mg1—O1—Mg1i | 120.57 (8) | Mg1—O2—C3—C4 | 114.7 (6) |
Mg1iii—Mg1—O1—Mg1i | −119.72 (9) |
Symmetry codes: (i) y+1/2, −x+1/2, −z+1/2; (ii) −y+1/2, x−1/2, −z+1/2; (iii) −x+1, −y, z. |
Experimental details
Crystal data | |
Chemical formula | [Mg4Br6O(C4H10O)4] |
Mr | 889.18 |
Crystal system, space group | Tetragonal, I4 |
Temperature (K) | 173 |
a, c (Å) | 10.4630 (13), 15.276 (2) |
V (Å3) | 1672.3 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.30 |
Crystal size (mm) | 0.25 × 0.22 × 0.18 |
Data collection | |
Diffractometer | Stoe IPDS II two-circle diffractometer |
Absorption correction | Multi-scan (MULABS; Spek, 2009; Blessing, 1995) |
Tmin, Tmax | 0.169, 0.269 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3746, 1479, 1455 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.067, 1.08 |
No. of reflections | 1479 |
No. of parameters | 73 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.56 |
Absolute structure | Flack (1983), with 689 Friedel pairs |
Absolute structure parameter | −0.02 (2) |
Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798. Web of Science CrossRef CAS Google Scholar
Lerner, H.-W., Scholz, S., Bolte, M., Wiberg, N., Nöth, H. & Krossing, I. (2003). Eur. J. Inorg. Chem. pp. 666–670. CSD CrossRef Google Scholar
Metzler, N., Nöth, H., Schmidt, M. & Treitl, A. (1994). Z. Naturforsch. Teil B, 49, 1448–1451. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stucky, G. & Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 4821–4825. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The solid-state structures of Mg–Br compounds feature coordination numbers of the Mg center from four as in [MgBr(SitBu3)(THF)]2 (Lerner et al., 2003; Lerner, 2005) to six as in [MgBr2(THF)4] (Metzler et al., 1994). Most of the Mg–Br compounds possess an octahedral coordination sphere which surrounds the Mg cation whereas only a few compounds are found in the Cambridge Structural Database (Allen, 2002) with five-coordinated Mg centers as found in the solid-state structure of the title compound. We report here the X-ray crystal structure analysis of [(MgOEt2)4Br6O], which could be isolated from a solution of C6F5MgBr in Et2O.
Data for the crystal structure of the title compound were collected at 173 K. It crystallizes in the tetragonal space group I4 with crystallographic 4 symmetry. The previously known polymorph (Stucky & Rundle, 1964) for which data were collected at room temperature crystallizes in the space group P421c and has crystallographic 4 symmetry, too. However, in the latter structure there is severe disorder of the C atoms, whereas in the title compound, no disorder was found. The geometric parameters involving Mg, Br and O atoms agree well in both structures.
Since the structures show striking similarities and were measured at different temperatures, a phase transition between them cannot be excluded.