metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{N-[1-(pyrazin-2-yl)ethyl­­idene-κN1]ethane-1,2-di­amine-κ2N,N′}zinc

aCollege of Chemistry and Chemical Engineering, Key Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jcliu8@nwnu.edu.cn

(Received 1 October 2011; accepted 12 October 2011; online 22 October 2011)

The ZnII atom in the title complex, [ZnCl2(C8H12N4)], is coordinated by two Cl atoms and three N atoms of the N-[1-(pyrazin-2-yl)ethyl­idene]ethane-1,2-diamine ligand, and displays a distorted square-pyramidal geometry with the apical position occupied by a Cl atom. In the crystal, inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional framework.

Related literature

For the use of dinucleating N-heterocyclic ligands in crystal engineering, see: Pascu et al. (2004[Pascu, M., Tuna, F., Kolodziejczyk, E., Pascu, G. I., Clarkson, G. & Hannon, M. J. (2004). Dalton Trans. pp. 1546-1555.]). For metal complexes of Schiff base ligands in coordination chemictry, see: Coles et al. (1998[Coles, S. J., Hursthouse, M. B., Kelly, D. G., Toner, A. J. & Walker, N. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3489-3494.]); Gourbatsis et al. (1999[Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369-2375.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C8H12N4)]

  • Mr = 300.49

  • Triclinic, [P \overline 1]

  • a = 7.106 (5) Å

  • b = 8.976 (6) Å

  • c = 10.225 (6) Å

  • α = 69.566 (5)°

  • β = 73.434 (5)°

  • γ = 83.056 (5)°

  • V = 585.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.594, Tmax = 0.646

  • 4159 measured reflections

  • 2129 independent reflections

  • 1790 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.071

  • S = 1.08

  • 2129 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯Cl1i 0.90 2.77 3.531 (4) 143
N4—H4A⋯Cl2ii 0.90 2.81 3.534 (3) 139
C2—H2⋯Cl2iii 0.93 2.81 3.672 (4) 155
C3—H3⋯Cl2iv 0.93 2.80 3.704 (4) 164
C6—H6B⋯Cl1i 0.97 2.84 3.550 (4) 131
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazines themselves are well known dinucleating ligands and, as many dinucleating N-heterocyclic ligands, have attracted much attention from crystal engineers (Pascu et al., 2004). On the other hand, Schiff base ligands have played an integral role in the development of coordination chemistry since the late 19 th century. The finding that metal complexes of these ligands are ubiquitous reflects their facile synthesis, wide applications and the accessibility to diverse structural modifications (Coles et al., 1998; Gourbatsis et al., 1999). Herein, we report on the synthesis of an asymmetric Schiff base using 2-acetylpyrazine as precursor and we report its ZnII complex.

The molecular structure of the complex [ZnCl2(C8H12N4)] is shown in Fig. 1. The complex is a mononuclear, five-coordinate species. The central zinc ion is coordinated by two chloride and three N atoms. The Schiff base acts as a tridentate chelating ligand, giving two five-membered rings. The coordination geometry about zinc(II) is distorted square-pyramidal. Atoms N1, N3, N4 and Cl1 form the basal plane and atom Cl2 is in apical position. The effect of the chelate rings is clearly observed in the N1—Zn1—N3 and N3—Zn1—N4 bond angles, which deviate by 16.7 and 12.0°, respectively, from the ideal value (90°). As a result, the N1—Zn1—N4 axis is not linear [145.43 (10)°], significantly deviated from the ideal value of 180°. The Zn—N distances in the basal plane are 2.122 (3), 2.245 (2), and 2.117 (3) Å.

In the crystal packing (Fig. 2), N—H···Cl and C—H···Cl hydrogen bonds link the molecules into sheets, which interact weakly to form a 3D framework.

Related literature top

For the use of dinucleating N-heterocyclic ligands in crystal engineering, see: Pascu et al. (2004). For metal complexes of Schiff base ligands in coordination chemictry, see: Coles et al. (1998); Gourbatsis et al. (1999).

Experimental top

To 0.2 mmol (0.0328 g) of N-[1-(pyrazin-2-yl)ethylidene]ethane-1,2-diamine in 15 ml of methanol was added 0.2 mmol (0.0272 g) of ZnCl2 in 10 ml of methanol, and the mixture was stirred at 333 K for 0.5 h. Upon free evaporation, single crystals suitable for XRD analysis were collected by filtration within two weeks (yield: 69%).

Refinement top

All H atoms were included in calculated positions, with C—H distances ranging from 0.93 to 0.97 Å, and N—H distances of 0.90 Å. They were refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(carrier C,N) or Uiso(H) = 1.5Ueq(C methyl).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
Dichlorido{N-[1-(pyrazin-2-yl)ethylidene-κN1]ethane-1,2- diamine-κ2N,N'}zinc top
Crystal data top
[ZnCl2(C8H12N4)]Z = 2
Mr = 300.49F(000) = 304
Triclinic, P1Dx = 1.704 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.106 (5) ÅCell parameters from 1862 reflections
b = 8.976 (6) Åθ = 2.2–26.4°
c = 10.225 (6) ŵ = 2.53 mm1
α = 69.566 (5)°T = 296 K
β = 73.434 (5)°Block, colourless
γ = 83.056 (5)°0.23 × 0.21 × 0.19 mm
V = 585.6 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2129 independent reflections
Radiation source: fine-focus sealed tube1790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.594, Tmax = 0.646k = 910
4159 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
2129 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.38 e Å3
0 constraints
Crystal data top
[ZnCl2(C8H12N4)]γ = 83.056 (5)°
Mr = 300.49V = 585.6 (6) Å3
Triclinic, P1Z = 2
a = 7.106 (5) ÅMo Kα radiation
b = 8.976 (6) ŵ = 2.53 mm1
c = 10.225 (6) ÅT = 296 K
α = 69.566 (5)°0.23 × 0.21 × 0.19 mm
β = 73.434 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1790 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.646Rint = 0.027
4159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.08Δρmax = 0.31 e Å3
2129 reflectionsΔρmin = 0.38 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.31700 (5)0.62496 (4)0.82328 (3)0.03108 (13)
C10.6706 (5)0.5945 (4)0.5517 (3)0.0429 (8)
H10.63440.48970.57830.051*
C20.8103 (5)0.6600 (4)0.4227 (3)0.0478 (9)
H20.86390.59760.36450.057*
C30.7916 (4)0.8893 (4)0.4693 (3)0.0348 (7)
H30.83180.99260.44420.042*
C40.6524 (4)0.8264 (3)0.5984 (3)0.0271 (6)
C50.5617 (4)0.9145 (3)0.7031 (3)0.0281 (6)
C60.3104 (4)0.9118 (3)0.9186 (3)0.0343 (7)
H6A0.27481.02300.87870.041*
H6B0.39520.90320.98040.041*
C70.1281 (5)0.8162 (4)1.0050 (3)0.0425 (8)
H7A0.07880.83361.09740.051*
H7B0.02690.85040.95330.051*
C80.6519 (5)1.0628 (4)0.6874 (4)0.0496 (9)
H8A0.55991.12010.74250.074*
H8B0.68651.12770.58740.074*
H8C0.76781.03630.72220.074*
Cl10.37658 (13)0.35645 (9)0.88661 (9)0.0501 (2)
Cl20.07883 (12)0.68599 (9)0.70197 (9)0.0431 (2)
N10.5878 (3)0.6794 (3)0.6377 (2)0.0322 (6)
N20.8705 (4)0.8072 (3)0.3791 (3)0.0438 (7)
N30.4131 (3)0.8493 (3)0.8015 (2)0.0285 (5)
N40.1750 (4)0.6466 (3)1.0283 (3)0.0460 (7)
H4A0.06450.59001.06820.055*
H4B0.25450.61021.08790.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0306 (2)0.0258 (2)0.0363 (2)0.00363 (14)0.00618 (14)0.01066 (15)
C10.0433 (19)0.0373 (19)0.054 (2)0.0035 (15)0.0081 (16)0.0252 (16)
C20.047 (2)0.057 (2)0.047 (2)0.0034 (17)0.0056 (16)0.0320 (18)
C30.0337 (17)0.0355 (18)0.0349 (16)0.0028 (13)0.0075 (13)0.0118 (14)
C40.0207 (14)0.0295 (16)0.0344 (16)0.0014 (12)0.0101 (12)0.0130 (13)
C50.0256 (15)0.0276 (16)0.0315 (15)0.0008 (12)0.0089 (12)0.0096 (13)
C60.0387 (17)0.0318 (17)0.0327 (16)0.0005 (13)0.0035 (13)0.0158 (13)
C70.0397 (19)0.044 (2)0.0408 (18)0.0042 (15)0.0049 (14)0.0212 (16)
C80.049 (2)0.046 (2)0.055 (2)0.0185 (17)0.0033 (17)0.0267 (17)
Cl10.0558 (6)0.0267 (4)0.0641 (6)0.0026 (4)0.0167 (4)0.0108 (4)
Cl20.0419 (5)0.0377 (5)0.0505 (5)0.0055 (3)0.0203 (4)0.0077 (4)
N10.0312 (13)0.0299 (14)0.0373 (13)0.0033 (11)0.0055 (11)0.0150 (11)
N20.0402 (16)0.0513 (18)0.0404 (15)0.0058 (13)0.0001 (12)0.0225 (14)
N30.0296 (13)0.0262 (13)0.0313 (13)0.0009 (10)0.0064 (11)0.0128 (11)
N40.0535 (18)0.0400 (17)0.0384 (15)0.0155 (14)0.0007 (13)0.0111 (13)
Geometric parameters (Å, º) top
Zn1—N42.117 (3)C5—N31.266 (3)
Zn1—N32.122 (3)C5—C81.485 (4)
Zn1—N12.245 (2)C6—N31.467 (3)
Zn1—Cl22.2807 (14)C6—C71.510 (4)
Zn1—Cl12.2862 (16)C6—H6A0.9700
C1—N11.329 (4)C6—H6B0.9700
C1—C21.387 (4)C7—N41.468 (4)
C1—H10.9300C7—H7A0.9700
C2—N21.320 (4)C7—H7B0.9700
C2—H20.9300C8—H8A0.9600
C3—N21.337 (4)C8—H8B0.9600
C3—C41.381 (4)C8—H8C0.9600
C3—H30.9300N4—H4A0.9000
C4—N11.335 (3)N4—H4B0.9000
C4—C51.505 (4)
N4—Zn1—N377.98 (9)N3—C6—H6B110.0
N4—Zn1—N1145.43 (10)C7—C6—H6B110.0
N3—Zn1—N173.32 (8)H6A—C6—H6B108.4
N4—Zn1—Cl2104.77 (9)N4—C7—C6109.6 (2)
N3—Zn1—Cl2104.26 (7)N4—C7—H7A109.8
N1—Zn1—Cl2100.68 (8)C6—C7—H7A109.8
N4—Zn1—Cl1100.56 (8)N4—C7—H7B109.8
N3—Zn1—Cl1146.85 (7)C6—C7—H7B109.8
N1—Zn1—Cl193.29 (7)H7A—C7—H7B108.2
Cl2—Zn1—Cl1108.03 (3)C5—C8—H8A109.5
N1—C1—C2120.9 (3)C5—C8—H8B109.5
N1—C1—H1119.5H8A—C8—H8B109.5
C2—C1—H1119.5C5—C8—H8C109.5
N2—C2—C1122.8 (3)H8A—C8—H8C109.5
N2—C2—H2118.6H8B—C8—H8C109.5
C1—C2—H2118.6C1—N1—C4117.2 (2)
N2—C3—C4122.5 (3)C1—N1—Zn1128.1 (2)
N2—C3—H3118.7C4—N1—Zn1113.90 (17)
C4—C3—H3118.7C2—N2—C3115.7 (3)
N1—C4—C3120.8 (2)C5—N3—C6122.9 (2)
N1—C4—C5115.2 (2)C5—N3—Zn1121.79 (19)
C3—C4—C5124.0 (3)C6—N3—Zn1114.89 (17)
N3—C5—C8125.8 (3)C7—N4—Zn1106.93 (18)
N3—C5—C4114.5 (2)C7—N4—H4A110.3
C8—C5—C4119.6 (2)Zn1—N4—H4A110.3
N3—C6—C7108.4 (2)C7—N4—H4B110.3
N3—C6—H6A110.0Zn1—N4—H4B110.3
C7—C6—H6A110.0H4A—N4—H4B108.6
N1—C1—C2—N20.9 (5)C1—C2—N2—C31.6 (5)
N2—C3—C4—N11.1 (4)C4—C3—N2—C21.5 (4)
N2—C3—C4—C5179.4 (3)C8—C5—N3—C61.6 (5)
N1—C4—C5—N311.6 (4)C4—C5—N3—C6176.5 (2)
C3—C4—C5—N3167.8 (3)C8—C5—N3—Zn1173.7 (2)
N1—C4—C5—C8166.6 (3)C4—C5—N3—Zn14.4 (3)
C3—C4—C5—C813.9 (4)C7—C6—N3—C5173.4 (3)
N3—C6—C7—N443.0 (3)C7—C6—N3—Zn113.9 (3)
C2—C1—N1—C43.5 (5)N4—Zn1—N3—C5162.1 (2)
C2—C1—N1—Zn1165.3 (2)N1—Zn1—N3—C51.6 (2)
C3—C4—N1—C13.6 (4)Cl2—Zn1—N3—C595.5 (2)
C5—C4—N1—C1176.9 (3)Cl1—Zn1—N3—C571.1 (3)
C3—C4—N1—Zn1166.8 (2)N4—Zn1—N3—C610.6 (2)
C5—C4—N1—Zn112.7 (3)N1—Zn1—N3—C6171.1 (2)
N4—Zn1—N1—C1147.8 (3)Cl2—Zn1—N3—C691.80 (19)
N3—Zn1—N1—C1177.1 (3)Cl1—Zn1—N3—C6101.6 (2)
Cl2—Zn1—N1—C175.2 (3)C6—C7—N4—Zn151.8 (3)
Cl1—Zn1—N1—C133.8 (3)N3—Zn1—N4—C733.3 (2)
N4—Zn1—N1—C443.1 (3)N1—Zn1—N4—C767.6 (3)
N3—Zn1—N1—C48.02 (18)Cl2—Zn1—N4—C768.5 (2)
Cl2—Zn1—N1—C493.82 (19)Cl1—Zn1—N4—C7179.54 (19)
Cl1—Zn1—N1—C4157.14 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···Cl1i0.902.773.531 (4)143
N4—H4A···Cl2ii0.902.813.534 (3)139
C2—H2···Cl2iii0.932.813.672 (4)155
C3—H3···Cl2iv0.932.803.704 (4)164
C6—H6B···Cl1i0.972.843.550 (4)131
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[ZnCl2(C8H12N4)]
Mr300.49
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.106 (5), 8.976 (6), 10.225 (6)
α, β, γ (°)69.566 (5), 73.434 (5), 83.056 (5)
V3)585.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.53
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.594, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
4159, 2129, 1790
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.08
No. of reflections2129
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.38

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···Cl1i0.902.773.531 (4)142.9
N4—H4A···Cl2ii0.902.813.534 (3)138.7
C2—H2···Cl2iii0.932.813.672 (4)154.5
C3—H3···Cl2iv0.932.803.704 (4)163.8
C6—H6B···Cl1i0.972.843.550 (4)130.9
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the NSFC (No. 20871099) and the Natural Science Foundation of Gansu (No. 0710RJZA113).

References

First citationBruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColes, S. J., Hursthouse, M. B., Kelly, D. G., Toner, A. J. & Walker, N. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3489–3494.  Web of Science CSD CrossRef Google Scholar
First citationGourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369–2375.  Web of Science CSD CrossRef CAS Google Scholar
First citationPascu, M., Tuna, F., Kolodziejczyk, E., Pascu, G. I., Clarkson, G. & Hannon, M. J. (2004). Dalton Trans. pp. 1546–1555.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds