metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1619-m1620

(R)-N-(Ferrocenylmeth­yl)-1-hy­dr­oxy-3-phenyl­propan-2-aminium (E)-but-2-enoate

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
*Correspondence e-mail: stepnic@natur.cuni.cz

(Received 7 October 2011; accepted 24 October 2011; online 29 October 2011)

The crystal structure of the title salt, [Fe(C5H5)(C15H19NO)](C4H5O2), consists of discrete ammonium and carboxyl­ate ions, which associate into infinite chains parallel to [100] by means of N—H⋯O and O—H⋯O inter­actions. These chains are further cross-linked into a three-dimensional network by additional C—H⋯O contacts and by offset ππ stacking inter­actions of inversion-related aromatic rings [centroid–centroid distance = 3.7040 (14) Å]. The mol­ecular parameters of the ionic components are in no way unexpected, the geometry of the ammonium cation being similar to that found in other structurally characterized salts obtained from N-ferrocenylmethyl β-amino­alcohols. The (E)-but-2-enoate anion consists of two approximately planar subunits, viz the delocalized carboxyl­ate unit and the butenyl group (the latter being planar within ca. 0.002 Å), which are mutually rotated by 30.3 (4)°.

Related literature

For crystal structures of N-ferrocenylmethyl β-amino­alcohols and their salts, see: Štěpnička et al. (2004[Štěpnička, P., Císařová, I. & Ludvík, J. (2004). J. Organomet. Chem. 689, 631-638.], 2008a[Štěpnička, P., Zábranský, M., Císařová, I. & Lamač, M. (2008a). J. Organomet. Chem. 693, 3831-3841.],b[Štěpnička, P., Zábranský, M., Lamač, M., Císařová, I. & Němec, P. (2008b). J. Organomet. Chem. 693, 1779-1786.]). For the preparation of a simple N-ferrocenylmethyl β-amino­alcohol, FcCH2NHCH2CH2OH (Fc = ferrocen­yl), see: Hess et al. (1999[Hess, A., Brosch, O., Weyhermüller, T. & Metzler-Nolte, N. (1999). J. Organomet. Chem. 589, 75-84.]). For an overview of organometallic crystal engineering, see: Braga et al. (2008[Braga, D., Curzi, M., Giaffreda, S. L., Grepioni, F., Maini, L., Pettersen, A. & Polito, M. (2008). Ferrocenes: Ligands, Materials and Biomolecules, edited by P. Štěpnička, pp. 465-498, Chichester: Wiley.]) and references cited therein.

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H19NO)](C4H5O2)

  • Mr = 435.33

  • Monoclinic, P 21

  • a = 5.9730 (2) Å

  • b = 15.3905 (3) Å

  • c = 11.7713 (4) Å

  • β = 100.4986 (13)°

  • V = 1063.99 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 150 K

  • 0.33 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 15916 measured reflections

  • 4864 independent reflections

  • 4511 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.067

  • S = 1.05

  • 4864 reflections

  • 265 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2329 Friedel pairs

  • Flack parameter: −0.016 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H91⋯O2i 0.95 1.74 2.685 (2) 173
N1—H92⋯O3 0.82 1.94 2.747 (2) 170
O1—H93⋯O3i 0.87 1.85 2.712 (2) 172
C16—H16⋯O1ii 0.93 2.56 3.447 (3) 159
C18—H18⋯O2iii 0.93 2.58 3.435 (3) 154
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

With our recent work (Štěpnička et al., 2004 and 2008a,b), we demonstrated that N-ferrocenylmethyl β-aminoalcohols with general formula FcCH2NHCR1R2CR3R4OH (Fc = ferrocenyl) are potentially useful building blocks for organometallic crystal engineering (Braga et al., 2008 and references therein). These compounds possess a balanced number of conventional H-bond donors and acceptors (OH and NH) in their native form. When reacted with protonic acids, they are readily converted to the corresponding ammonium salts, the crystal assembly of which receives additional support from charge interactions. This contribution reports the crystal structure of a salt obtained from a chiral aminoalcohol, namely (R)-2-[(ferrocenylmethyl)azonia]-3-phenylpropan-1-ol (E)-but-2-enoate.

Several crystals of the title compound were isolated unexpectedly during attempted crystallization of (R)-2-[(ferrocenylmethyl)amino]-3-phenylpropan-1-ol from ethyl acetate/hexane, apparently resulting from the reaction of the free amine with (E)-but-2-enoic acid present as a trace impurity in reagent grade ethyl acetate. A view of the molecular structure is presented in Fig. 1.

The geometry of the cation is rather unexceptional, and compares well with those reported earlier for salts obtained from FcCH2CMe2CH2OH and similar N-ferrocenylmethyl β-aminoalcohols (Štěpnička et al., 2004 and 2008a,b). The ferrocenylmethyl and benzyl group attached to the 'central' N1—C12 bond assume an anticlinal eclipsed conformation (cf. torsion angle C11—N1—C12—C14) while their aromatic rings, C(1–5) and C(15–20), are nearly parallel [dihedral angle 7.75 (12)°] but mutually offset. The CH2OH pendant group is appended in a gauche position (cf. torsion angle C11—N1—C12—C13). Atom C13 is directed towards the ferrocenyl group and the C13—O1 bond extends away from the N1—C12 bond (cf. torsion angle N1—C12—C13—O1).

The ferrocenyl group shows negligible tilting [dihedral angle of the least-squares cyclopentadienyl planes is 1.63 (13)°] and similar Fe1—ring centroid distances [1.6461 (10) Å and 1.6565 (10) Å for the rings C(1–5) and C(6–10), respectively]. Although the Fe—C distances between Fe1 and individual carbon atoms in the substituted cyclopentadienyl ring C(1–5) differ by less than 0.03 Å [2.0271 (16)–2.054 (2) Å], there is a clear trend with the Fe—C distance gradually increasing from the Cipso to the opposite edge of the five-membered ring (ipso < α < β). The Fe—C distances observed for the unsubstituted cyclopentadienyl ring vary significantly less [2.040 (2)–2.058 (2) Å].

The CC double bond within the (E)-but-2-enoate anion has an almost ideal trans configuration with the torsion angle C21—C22—C23—C24 of -179.6 (3)°, which renders the whole CH3—CHCH—C group nearly perfectly planar (within ca. 0.002 Å). The terminal carboxyl group (C21, O2, O3) is symmetrically rotated from the plane of the CH3—CH CH—C moiety by as much as 30.3 (4)° and shows a delocalized character. The individual C—O distances differ by only ca. 0.02 Å and even this relatively small difference may come mainly from crystal packing effects as the longer C—O distance is associated with O3 acting as a double H-bond acceptor, while the shorter one involves O2 atom for which only one strong H-bond was detected.

The ions constituting the crystal of the title compound assemble by means of H-bonds between OH and NH groups and carboxylate oxygen atoms to form infinite chains in the [1 0 0] direction (Fig. 2). Distances between the H-bond donors and acceptors are close to 2.7 Å while the H-bond angles fall into the range 170–173° (Table 2). In addition, these conventional H-bonds are supported by the softer C—H···O interactions formed by CH groups at the terminal phenyl ring and proximal oxygen atoms O1 and O2 and further by π···π stacking interactions between the unsubstituted cyclopentadienyl ring C(6–10) and phenyl ring in a molecule related by unit-cell translation along the c-axis (Fig. 3). Least-squares planes of the interacting aromatic rings make a dihedral angle of 6.22 (12)°, and the distance of their respective centroids is 3.7040 (14) Å.

Related literature top

For crystal structures of N-ferrocenylmethyl β-aminoalcohols and their salts, see: Štěpnička et al. (2004, 2008a,b). For the preparation of a simple N-ferrocenylmethyl β-aminoalcohol, FcCH2NHCH2CH2OH (Fc = ferrocenyl), see: Hess et al. (1999). For an overview of organometallic crystal engineering, see: Braga et al. (2008) and references cited therein.

Experimental top

(R)-2-[(Ferrocenylmethyl)amino]-3-phenylpropan-1-ol was prepared by an established two-step procedure (Hess et al., 1999; Štěpnička et al. 2004 and 2008b) consisting of condensation of ferrocene carboxaldehyde with (R)-phenylalaninol and subsequent reduction of the intermediate Schiff base as follows.

Ferrocene carboxaldehyde (428 mg, 2.00 mmol) and (R)-2-amino-3-phenylpropan-1-ol (318 mg, 2.1 mmol) were dissolved in dry chloroform (20 ml). The resulting solution was refluxed under argon for 90 min and then evaporated under vacuum. The residue was immediately re-dissolved in dry methanol (20 ml) and the solution was cooled in ice. An amount of NaBH4 (380 mg, 10 mmol) was added over 30 min causing the colour of the reaction mixture to change from initial orange red to orange yellow. After the addition, the reaction mixture was stirred at 0 °C for 1 h and at room temperature for 90 min before being quenched by addition of 10% aqueous NaOH and extracted with dichloromethane (2×20 ml). The combined organic extracts were washed with brine (2×20 ml) and dried over MgSO4 overnight.

The drying agent was filtered off and the filtrate was evaporated under vacuum leaving a residue which was purified by column chromatography over silica gel. Elution with dichloromethane–methanol (10:1 v/v) led to the development of two yellow bands. The first one containing ferrocenylmethanol was discarded. The second one was collected and evaporated under vacuum to afford (R)-2-[(ferrocenylmethyl)amino]-3-phenylpropan-1-ol (371 mg, 53%) as an orange amorphous solid.

Characterization. 1H NMR (CDCl3): δ 2.31 (br s, 2 H, NH and OH), 2.78 (dd, 2JHH = 13.7, 3JHH = 6.7 Hz, 1 H, CH2Ph), 2.83 (dd, 2JHH = 13.7, 3JHH = 7.6 Hz, 1 H, CH2Ph), 3.01 (m, 1 H, CHN), 3.38 (dd, 2JHH = 10.8, 3JHH = 4.7 Hz, 1 H, CH2O), 3.42 and 3.53 (2×d, 2JHH = 12.9 Hz, 1 H, AB spin system of FcCH2), 3.67 (dd, 2JHH = 10.8, 3JHH = 3.8 Hz, 1 H, CH2O), 3.99 (s, 5 H, C5H5), 4.06 (m, 1 H, C5H4), 4.08 (virtual t, 2 H, C5H4), 4.14 (m, 1 H, C5H4), 7.18–7.34 (m, 5 H, Ph).

13C{1H} NMR (CDCl3): δ 38.15 (CH2Ph), 46.01 (FcCH2), 59.65 (CHN), 62.29 (CH2O), 67.66 (2 C), 67.77 and 67.89 (CH of C5H4); 68.34 (C5H5), 86.61 (Cipso of C5H4), 126.61 (1 C), 128.70 (2 C) and 129.18 (2 C) (3×CH of Ph); 138.44 (Cipso of Ph).

IR (neat): ν/cm-1 3296 br s, 3086 s, 3026 m, 2924 s, 2856 m, 1653 br m, 1603 w, 1495 s, 1454 very strong, 1412 m, 1352 m, 1329 m, 1232 m, 1105 very strong, 1041 very strong br, 1001 s, 818 br very strong, 746 very strong, 700 very strong, 484 very strong.

MS: m/z (relative abundance) 350 (9), 349 (38, M+.), 347 (3), 331 (3, [M – H2O]+.), 266 (2), 200 (16), 199 (100, [FcCH2]+), 197 (6), 186 (2, FcH+.), 148 (3), 147 (3), 138 (2), 121 (28, [C5H5Fe]+), 91 (11), 78 (4), 77 (3), 65 (4), 56 (11, Fe+).

Few crystals of the title compound have been obtained upon attempted recrystallization of (R)-2-[(ferrocenylmethyl)amino]-3-phenylpropan-1-ol from ethyl acetate/hexane, resulting by a reaction of this compound with tiny amounts of (E)-but-2-enoic acid present in the commercial solvent (Lach-Ner).

Refinement top

N– and O-bonded H atoms were identified on the difference electron maps and isotropically refined as riding atoms. The remaining H-atoms were included in their calculated positions and refined as riding atoms with Uiso(H) assigned to a multiple of Ueq(C) of their bonding carbon atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the structure of the title compound showing displacement ellipsoids for non-H atoms at the 30% probability level.
[Figure 2] Fig. 2. Section of the infinite H-bonded chains in the crystal structure of the title compound. The bulky ferrocenyl moieties were replaced with filled squares for clarity.
[Figure 3] Fig. 3. π···π Stacking interactions of the aromatic rings in the structure of the title compound (indicated by a dotted line). The molecules depicted relate by unit-cell translation in the direction of the c-axis.
(R)-N-(Ferrocenylmethyl)-1-hydroxy-3-phenylpropan-2-aminium (E)-but-2-enoate top
Crystal data top
[Fe(C5H5)(C15H19NO)](C4H5O2)F(000) = 460
Mr = 435.33Dx = 1.359 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.9730 (2) ÅCell parameters from 2535 reflections
b = 15.3905 (3) Åθ = 1.0–27.5°
c = 11.7713 (4) ŵ = 0.73 mm1
β = 100.4986 (13)°T = 150 K
V = 1063.99 (6) Å3Block, yellow
Z = 20.33 × 0.12 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
4511 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Horizontally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 9.091 pixels mm-1h = 77
ω and ϕ scans to fill the Ewald spherek = 1920
15916 measured reflectionsl = 1515
4864 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.023P)2 + 0.4582P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4864 reflectionsΔρmax = 0.36 e Å3
265 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 2329 Friedel pairs
0 constraintsAbsolute structure parameter: 0.016 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Fe(C5H5)(C15H19NO)](C4H5O2)V = 1063.99 (6) Å3
Mr = 435.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9730 (2) ŵ = 0.73 mm1
b = 15.3905 (3) ÅT = 150 K
c = 11.7713 (4) Å0.33 × 0.12 × 0.10 mm
β = 100.4986 (13)°
Data collection top
Nonius KappaCCD
diffractometer
4511 reflections with I > 2σ(I)
15916 measured reflectionsRint = 0.043
4864 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.36 e Å3
S = 1.05Δρmin = 0.27 e Å3
4864 reflectionsAbsolute structure: Flack (1983), 2329 Friedel pairs
265 parametersAbsolute structure parameter: 0.016 (12)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.34726 (4)0.852498 (19)1.26047 (2)0.01975 (7)
N10.2364 (3)0.79109 (11)0.88685 (13)0.0188 (3)
H910.12150.83260.86110.025 (6)*
H920.36160.81290.88690.045 (8)*
O10.2057 (3)0.69386 (11)0.78892 (14)0.0335 (4)
H930.23030.74270.82110.034 (7)*
O20.9374 (3)0.91779 (11)0.81113 (14)0.0316 (4)
O30.6734 (2)0.84425 (12)0.88161 (12)0.0279 (3)
C10.3185 (3)0.84770 (18)1.08632 (14)0.0202 (3)
C20.1952 (4)0.92054 (14)1.11836 (18)0.0235 (4)
H20.04000.93061.09560.028*
C30.3518 (4)0.97480 (13)1.19111 (18)0.0260 (5)
H30.31651.02671.22430.031*
C40.5715 (4)0.93652 (14)1.20475 (18)0.0243 (4)
H40.70440.95871.24870.029*
C50.5524 (3)0.85864 (18)1.13951 (15)0.0209 (4)
H50.67120.82111.13240.025*
C60.2180 (4)0.73848 (15)1.30972 (19)0.0322 (5)
H60.15630.69401.26030.039*
C70.0964 (4)0.80938 (16)1.3456 (2)0.0319 (5)
H70.05920.81941.32450.038*
C80.2551 (4)0.86256 (18)1.41971 (17)0.0302 (5)
H80.22190.91381.45510.036*
C90.4725 (4)0.82358 (14)1.42989 (18)0.0297 (5)
H90.60720.84451.47360.036*
C100.4491 (4)0.74712 (15)1.36194 (19)0.0301 (5)
H100.56590.70911.35320.036*
C110.2253 (4)0.77346 (13)1.01152 (17)0.0220 (4)
H11A0.06840.76341.01900.026*
H11B0.31180.72141.03680.026*
C120.2090 (4)0.71216 (13)0.80983 (17)0.0211 (4)
H120.34770.67710.82970.025*
C130.0092 (4)0.65595 (13)0.82677 (19)0.0242 (4)
H13A0.01620.60170.78570.029*
H13B0.02450.64230.90830.029*
C140.1931 (4)0.74385 (14)0.68492 (18)0.0255 (4)
H14A0.06530.78340.66590.031*
H14B0.33050.77560.67850.031*
C150.1632 (4)0.66929 (13)0.59961 (17)0.0220 (4)
C160.3474 (4)0.61840 (14)0.58549 (18)0.0261 (5)
H160.49090.63070.62800.031*
C170.3201 (4)0.54932 (15)0.5087 (2)0.0307 (5)
H170.44470.51510.50090.037*
C180.1077 (5)0.53108 (15)0.4434 (2)0.0304 (5)
H180.08960.48510.39120.037*
C190.0769 (4)0.58170 (15)0.45646 (19)0.0294 (5)
H190.21990.57000.41290.035*
C200.0487 (4)0.65025 (15)0.53490 (19)0.0258 (5)
H200.17390.68370.54400.031*
C210.7467 (4)0.91227 (15)0.83988 (18)0.0259 (4)
C220.6023 (5)0.99310 (18)0.8262 (2)0.0466 (7)
H220.61891.03090.76670.056*
C230.4576 (5)1.01401 (17)0.8904 (2)0.0474 (7)
H230.44450.97540.94960.057*
C240.3080 (5)1.09256 (16)0.8816 (3)0.0422 (6)
H24A0.35451.13330.82870.063*
H24B0.32071.11900.95630.063*
H24C0.15281.07570.85410.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02130 (13)0.02038 (12)0.01725 (12)0.00067 (14)0.00270 (9)0.00026 (14)
N10.0175 (9)0.0220 (8)0.0167 (8)0.0016 (7)0.0030 (6)0.0008 (6)
O10.0226 (8)0.0361 (9)0.0408 (9)0.0039 (7)0.0033 (7)0.0117 (7)
O20.0224 (8)0.0355 (9)0.0386 (9)0.0020 (7)0.0104 (7)0.0121 (7)
O30.0221 (7)0.0293 (8)0.0337 (7)0.0016 (8)0.0089 (5)0.0043 (8)
C10.0221 (8)0.0229 (9)0.0153 (7)0.0016 (11)0.0027 (6)0.0010 (10)
C20.0229 (11)0.0263 (10)0.0206 (10)0.0053 (8)0.0020 (8)0.0042 (8)
C30.0335 (12)0.0196 (10)0.0245 (11)0.0028 (9)0.0042 (9)0.0014 (8)
C40.0244 (11)0.0250 (11)0.0235 (10)0.0048 (8)0.0041 (8)0.0013 (8)
C50.0202 (9)0.0226 (9)0.0204 (8)0.0010 (10)0.0046 (7)0.0029 (10)
C60.0433 (14)0.0284 (11)0.0238 (11)0.0115 (10)0.0031 (10)0.0039 (9)
C70.0259 (12)0.0436 (13)0.0277 (12)0.0029 (10)0.0086 (9)0.0068 (10)
C80.0413 (12)0.0327 (13)0.0195 (9)0.0010 (11)0.0131 (8)0.0008 (10)
C90.0325 (12)0.0380 (13)0.0171 (10)0.0031 (9)0.0005 (9)0.0027 (8)
C100.0389 (13)0.0278 (11)0.0228 (11)0.0075 (10)0.0038 (9)0.0069 (9)
C110.0266 (11)0.0232 (10)0.0162 (9)0.0033 (8)0.0039 (8)0.0018 (8)
C120.0226 (10)0.0219 (10)0.0187 (10)0.0024 (8)0.0037 (8)0.0022 (8)
C130.0233 (11)0.0255 (11)0.0241 (10)0.0038 (8)0.0051 (8)0.0030 (8)
C140.0299 (12)0.0243 (10)0.0217 (10)0.0019 (9)0.0033 (9)0.0004 (8)
C150.0273 (11)0.0240 (10)0.0147 (9)0.0031 (9)0.0034 (8)0.0020 (8)
C160.0236 (11)0.0298 (11)0.0242 (11)0.0000 (9)0.0023 (9)0.0044 (9)
C170.0309 (13)0.0296 (12)0.0337 (12)0.0046 (9)0.0114 (10)0.0034 (10)
C180.0430 (16)0.0248 (12)0.0244 (11)0.0063 (10)0.0085 (10)0.0012 (9)
C190.0292 (13)0.0349 (12)0.0228 (11)0.0055 (10)0.0013 (9)0.0005 (9)
C200.0246 (12)0.0304 (12)0.0216 (11)0.0020 (10)0.0026 (9)0.0014 (9)
C210.0241 (11)0.0303 (11)0.0234 (10)0.0041 (9)0.0043 (9)0.0058 (9)
C220.0508 (17)0.0441 (15)0.0521 (16)0.0222 (13)0.0286 (13)0.0257 (13)
C230.064 (2)0.0370 (14)0.0464 (16)0.0139 (13)0.0238 (14)0.0131 (12)
C240.0431 (16)0.0321 (13)0.0530 (16)0.0061 (11)0.0133 (13)0.0033 (12)
Geometric parameters (Å, º) top
Fe1—C12.0271 (17)C9—H90.9300
Fe1—C102.040 (2)C10—H100.9300
Fe1—C22.041 (2)C11—H11A0.9700
Fe1—C52.0430 (18)C11—H11B0.9700
Fe1—C62.043 (2)C12—C131.516 (3)
Fe1—C92.047 (2)C12—C141.536 (3)
Fe1—C82.0533 (19)C12—H120.9800
Fe1—C42.053 (2)C13—H13A0.9700
Fe1—C32.054 (2)C13—H13B0.9700
Fe1—C72.059 (2)C14—C151.514 (3)
N1—C111.506 (2)C14—H14A0.9700
N1—C121.507 (2)C14—H14B0.9700
N1—H910.9454C15—C161.385 (3)
N1—H920.8195C15—C201.385 (3)
O1—C131.407 (3)C16—C171.386 (3)
O1—H930.8666C16—H160.9300
C1—C21.429 (3)C17—C181.387 (4)
C1—C51.433 (3)C17—H170.9300
C1—C111.487 (3)C18—C191.381 (3)
C2—C31.419 (3)C18—H180.9300
C2—H20.9300C19—C201.392 (3)
C3—C41.420 (3)C19—H190.9300
C3—H30.9300C20—H200.9300
C4—C51.417 (3)O2—C211.249 (3)
C4—H40.9300O3—C211.268 (3)
C5—H50.9300C21—C221.505 (3)
C6—C101.411 (3)C22—C231.288 (4)
C6—C71.417 (3)C22—H220.9300
C6—H60.9300C23—C241.496 (3)
C7—C81.424 (3)C23—H230.9300
C7—H70.9300C24—H24A0.9600
C8—C91.415 (3)C24—H24B0.9600
C8—H80.9300C24—H24C0.9600
C9—C101.415 (3)
C1—Fe1—C10121.63 (10)C10—C6—H6125.9
C1—Fe1—C241.13 (9)C7—C6—H6125.9
C10—Fe1—C2158.18 (9)Fe1—C6—H6125.6
C1—Fe1—C541.24 (7)C6—C7—C8107.7 (2)
C10—Fe1—C5106.98 (10)C6—C7—Fe169.19 (13)
C2—Fe1—C568.83 (8)C8—C7—Fe169.54 (12)
C1—Fe1—C6106.79 (10)C6—C7—H7126.1
C10—Fe1—C640.44 (10)C8—C7—H7126.1
C2—Fe1—C6122.59 (9)Fe1—C7—H7126.7
C5—Fe1—C6122.90 (10)C9—C8—C7107.8 (2)
C1—Fe1—C9157.79 (9)C9—C8—Fe169.58 (12)
C10—Fe1—C940.52 (9)C7—C8—Fe169.93 (12)
C2—Fe1—C9159.87 (9)C9—C8—H8126.1
C5—Fe1—C9121.99 (9)C7—C8—H8126.1
C6—Fe1—C968.08 (9)Fe1—C8—H8126.0
C1—Fe1—C8159.80 (8)C8—C9—C10108.1 (2)
C10—Fe1—C868.07 (10)C8—C9—Fe170.04 (12)
C2—Fe1—C8123.80 (9)C10—C9—Fe169.47 (12)
C5—Fe1—C8158.01 (9)C8—C9—H9126.0
C6—Fe1—C868.15 (10)C10—C9—H9126.0
C9—Fe1—C840.38 (9)Fe1—C9—H9126.1
C1—Fe1—C468.90 (9)C6—C10—C9108.2 (2)
C10—Fe1—C4123.05 (10)C6—C10—Fe169.89 (12)
C2—Fe1—C468.52 (9)C9—C10—Fe170.01 (12)
C5—Fe1—C440.47 (10)C6—C10—H10125.9
C6—Fe1—C4159.02 (9)C9—C10—H10125.9
C9—Fe1—C4107.71 (9)Fe1—C10—H10125.8
C8—Fe1—C4122.89 (10)C1—C11—N1111.13 (16)
C1—Fe1—C368.67 (10)C1—C11—H11A109.4
C10—Fe1—C3159.57 (9)N1—C11—H11A109.4
C2—Fe1—C340.55 (9)C1—C11—H11B109.4
C5—Fe1—C368.13 (10)N1—C11—H11B109.4
C6—Fe1—C3158.90 (9)H11A—C11—H11B108.0
C9—Fe1—C3123.88 (9)N1—C12—C13112.49 (16)
C8—Fe1—C3108.60 (10)N1—C12—C14107.53 (15)
C4—Fe1—C340.47 (9)C13—C12—C14113.21 (17)
C1—Fe1—C7123.06 (9)N1—C12—H12107.8
C10—Fe1—C767.96 (10)C13—C12—H12107.8
C2—Fe1—C7108.04 (10)C14—C12—H12107.8
C5—Fe1—C7159.48 (9)O1—C13—C12114.61 (17)
C6—Fe1—C740.43 (10)O1—C13—H13A108.6
C9—Fe1—C767.97 (9)C12—C13—H13A108.6
C8—Fe1—C740.53 (10)O1—C13—H13B108.6
C4—Fe1—C7158.99 (9)C12—C13—H13B108.6
C3—Fe1—C7123.54 (10)H13A—C13—H13B107.6
C11—N1—C12114.96 (15)C12—C14—C15111.95 (17)
C11—N1—H91106.0C15—C14—H14A109.2
C12—N1—H91111.0C12—C14—H14A109.2
C11—N1—H92105.9C15—C14—H14B109.2
C12—N1—H92109.2C12—C14—H14B109.2
H91—N1—H92109.5H14A—C14—H14B107.9
C13—O1—H93116.1C16—C15—C20118.7 (2)
C2—C1—C5107.5 (2)C16—C15—C14120.54 (19)
C2—C1—C11127.15 (18)C20—C15—C14120.7 (2)
C5—C1—C11125.4 (2)C15—C16—C17120.7 (2)
C2—C1—Fe169.96 (11)C15—C16—H16119.6
C5—C1—Fe169.98 (9)C17—C16—H16119.6
C11—C1—Fe1125.48 (16)C16—C17—C18120.2 (2)
C3—C2—C1107.84 (18)C16—C17—H17119.9
C3—C2—Fe170.21 (12)C18—C17—H17119.9
C1—C2—Fe168.91 (11)C19—C18—C17119.5 (2)
C3—C2—H2126.1C19—C18—H18120.3
C1—C2—H2126.1C17—C18—H18120.3
Fe1—C2—H2126.4C18—C19—C20119.9 (2)
C2—C3—C4108.53 (18)C18—C19—H19120.0
C2—C3—Fe169.24 (12)C20—C19—H19120.0
C4—C3—Fe169.75 (12)C15—C20—C19120.9 (2)
C2—C3—H3125.7C15—C20—H20119.6
C4—C3—H3125.7C19—C20—H20119.6
Fe1—C3—H3126.9O2—C21—O3123.9 (2)
C5—C4—C3107.96 (19)O2—C21—C22116.6 (2)
C5—C4—Fe169.37 (12)O3—C21—C22119.5 (2)
C3—C4—Fe169.79 (12)C23—C22—C21125.2 (2)
C5—C4—H4126.0C23—C22—H22117.4
C3—C4—H4126.0C21—C22—H22117.4
Fe1—C4—H4126.4C22—C23—C24128.1 (3)
C4—C5—C1108.2 (2)C22—C23—H23115.9
C4—C5—Fe170.16 (11)C24—C23—H23115.9
C1—C5—Fe168.79 (10)C23—C24—H24A109.5
C4—C5—H5125.9C23—C24—H24B109.5
C1—C5—H5125.9H24A—C24—H24B109.5
Fe1—C5—H5126.7C23—C24—H24C109.5
C10—C6—C7108.2 (2)H24A—C24—H24C109.5
C10—C6—Fe169.67 (13)H24B—C24—H24C109.5
C7—C6—Fe170.37 (13)
C10—Fe1—C1—C2162.25 (13)C4—Fe1—C6—C1044.6 (3)
C5—Fe1—C1—C2118.3 (2)C3—Fe1—C6—C10166.5 (2)
C6—Fe1—C1—C2120.65 (14)C7—Fe1—C6—C10119.01 (19)
C9—Fe1—C1—C2166.4 (2)C1—Fe1—C6—C7121.63 (14)
C8—Fe1—C1—C248.5 (4)C10—Fe1—C6—C7119.01 (19)
C4—Fe1—C1—C281.09 (14)C2—Fe1—C6—C779.43 (15)
C3—Fe1—C1—C237.53 (13)C5—Fe1—C6—C7163.87 (13)
C7—Fe1—C1—C279.43 (17)C9—Fe1—C6—C781.30 (15)
C10—Fe1—C1—C579.49 (18)C8—Fe1—C6—C737.63 (13)
C2—Fe1—C1—C5118.3 (2)C4—Fe1—C6—C7163.6 (2)
C6—Fe1—C1—C5121.09 (16)C3—Fe1—C6—C747.5 (3)
C9—Fe1—C1—C548.1 (3)C10—C6—C7—C80.6 (2)
C8—Fe1—C1—C5166.7 (3)Fe1—C6—C7—C859.06 (16)
C4—Fe1—C1—C537.17 (15)C10—C6—C7—Fe159.66 (15)
C3—Fe1—C1—C580.73 (16)C1—Fe1—C7—C676.56 (17)
C7—Fe1—C1—C5162.31 (14)C10—Fe1—C7—C637.74 (14)
C10—Fe1—C1—C1140.3 (2)C2—Fe1—C7—C6119.41 (14)
C2—Fe1—C1—C11122.0 (2)C5—Fe1—C7—C641.7 (3)
C5—Fe1—C1—C11119.8 (3)C9—Fe1—C7—C681.61 (14)
C6—Fe1—C1—C111.3 (2)C8—Fe1—C7—C6119.3 (2)
C9—Fe1—C1—C1171.7 (3)C4—Fe1—C7—C6163.7 (2)
C8—Fe1—C1—C1173.5 (4)C3—Fe1—C7—C6161.43 (13)
C4—Fe1—C1—C11156.9 (2)C1—Fe1—C7—C8164.13 (15)
C3—Fe1—C1—C11159.50 (19)C10—Fe1—C7—C881.57 (16)
C7—Fe1—C1—C1142.5 (2)C2—Fe1—C7—C8121.28 (15)
C5—C1—C2—C30.5 (2)C5—Fe1—C7—C8161.0 (2)
C11—C1—C2—C3179.57 (19)C6—Fe1—C7—C8119.3 (2)
Fe1—C1—C2—C359.65 (15)C9—Fe1—C7—C837.70 (14)
C5—C1—C2—Fe160.19 (13)C4—Fe1—C7—C844.4 (3)
C11—C1—C2—Fe1119.9 (2)C3—Fe1—C7—C879.26 (17)
C1—Fe1—C2—C3119.19 (18)C6—C7—C8—C90.6 (2)
C10—Fe1—C2—C3163.5 (2)Fe1—C7—C8—C959.48 (14)
C5—Fe1—C2—C380.69 (14)C6—C7—C8—Fe158.85 (15)
C6—Fe1—C2—C3162.97 (13)C1—Fe1—C8—C9160.5 (3)
C9—Fe1—C2—C345.8 (3)C10—Fe1—C8—C937.68 (14)
C8—Fe1—C2—C378.92 (16)C2—Fe1—C8—C9163.12 (13)
C4—Fe1—C2—C337.10 (13)C5—Fe1—C8—C943.3 (4)
C7—Fe1—C2—C3120.86 (14)C6—Fe1—C8—C981.42 (15)
C10—Fe1—C2—C144.3 (3)C4—Fe1—C8—C978.40 (17)
C5—Fe1—C2—C138.51 (13)C3—Fe1—C8—C9120.82 (14)
C6—Fe1—C2—C177.83 (15)C7—Fe1—C8—C9119.0 (2)
C9—Fe1—C2—C1165.0 (2)C1—Fe1—C8—C741.6 (4)
C8—Fe1—C2—C1161.88 (13)C10—Fe1—C8—C781.28 (16)
C4—Fe1—C2—C182.10 (13)C2—Fe1—C8—C777.92 (18)
C3—Fe1—C2—C1119.19 (18)C5—Fe1—C8—C7162.3 (3)
C7—Fe1—C2—C1119.94 (13)C6—Fe1—C8—C737.54 (15)
C1—C2—C3—C40.0 (2)C9—Fe1—C8—C7119.0 (2)
Fe1—C2—C3—C458.83 (15)C4—Fe1—C8—C7162.64 (14)
C1—C2—C3—Fe158.83 (14)C3—Fe1—C8—C7120.22 (15)
C1—Fe1—C3—C238.06 (12)C7—C8—C9—C100.4 (2)
C10—Fe1—C3—C2162.4 (2)Fe1—C8—C9—C1059.28 (15)
C5—Fe1—C3—C282.56 (13)C7—C8—C9—Fe159.70 (15)
C6—Fe1—C3—C243.3 (3)C1—Fe1—C9—C8162.3 (2)
C9—Fe1—C3—C2162.72 (13)C10—Fe1—C9—C8119.2 (2)
C8—Fe1—C3—C2120.63 (13)C2—Fe1—C9—C844.5 (3)
C4—Fe1—C3—C2120.14 (18)C5—Fe1—C9—C8162.37 (16)
C7—Fe1—C3—C278.28 (15)C6—Fe1—C9—C881.59 (16)
C1—Fe1—C3—C482.08 (13)C4—Fe1—C9—C8120.28 (15)
C10—Fe1—C3—C442.3 (3)C3—Fe1—C9—C878.66 (17)
C2—Fe1—C3—C4120.14 (18)C7—Fe1—C9—C837.84 (15)
C5—Fe1—C3—C437.58 (12)C1—Fe1—C9—C1043.1 (3)
C6—Fe1—C3—C4163.4 (2)C2—Fe1—C9—C10163.7 (2)
C9—Fe1—C3—C477.14 (15)C5—Fe1—C9—C1078.40 (16)
C8—Fe1—C3—C4119.22 (13)C6—Fe1—C9—C1037.63 (14)
C7—Fe1—C3—C4161.58 (13)C8—Fe1—C9—C10119.2 (2)
C2—C3—C4—C50.5 (2)C4—Fe1—C9—C10120.49 (14)
Fe1—C3—C4—C559.07 (15)C3—Fe1—C9—C10162.11 (14)
C2—C3—C4—Fe158.52 (15)C7—Fe1—C9—C1081.39 (15)
C1—Fe1—C4—C537.85 (13)C7—C6—C10—C90.3 (2)
C10—Fe1—C4—C576.95 (15)Fe1—C6—C10—C959.76 (15)
C2—Fe1—C4—C582.15 (13)C7—C6—C10—Fe160.10 (15)
C6—Fe1—C4—C544.0 (3)C8—C9—C10—C60.1 (2)
C9—Fe1—C4—C5118.85 (13)Fe1—C9—C10—C659.68 (15)
C8—Fe1—C4—C5160.63 (13)C8—C9—C10—Fe159.63 (15)
C3—Fe1—C4—C5119.32 (18)C1—Fe1—C10—C678.49 (15)
C7—Fe1—C4—C5166.6 (2)C2—Fe1—C10—C645.8 (3)
C1—Fe1—C4—C381.46 (14)C5—Fe1—C10—C6121.15 (14)
C10—Fe1—C4—C3163.74 (12)C9—Fe1—C10—C6119.15 (19)
C2—Fe1—C4—C337.17 (12)C8—Fe1—C10—C681.60 (15)
C5—Fe1—C4—C3119.32 (18)C4—Fe1—C10—C6162.53 (13)
C6—Fe1—C4—C3163.3 (2)C3—Fe1—C10—C6166.1 (2)
C9—Fe1—C4—C3121.83 (13)C7—Fe1—C10—C637.73 (14)
C8—Fe1—C4—C380.05 (15)C1—Fe1—C10—C9162.36 (13)
C7—Fe1—C4—C347.3 (3)C2—Fe1—C10—C9165.0 (2)
C3—C4—C5—C10.9 (2)C5—Fe1—C10—C9119.70 (14)
Fe1—C4—C5—C158.45 (14)C6—Fe1—C10—C9119.15 (19)
C3—C4—C5—Fe159.33 (15)C8—Fe1—C10—C937.56 (14)
C2—C1—C5—C40.9 (2)C4—Fe1—C10—C978.31 (16)
C11—C1—C5—C4179.22 (19)C3—Fe1—C10—C946.9 (3)
Fe1—C1—C5—C459.30 (14)C7—Fe1—C10—C981.43 (15)
C2—C1—C5—Fe160.18 (13)C2—C1—C11—N191.1 (2)
C11—C1—C5—Fe1119.9 (2)C5—C1—C11—N188.8 (2)
C1—Fe1—C5—C4119.7 (2)Fe1—C1—C11—N1178.21 (13)
C10—Fe1—C5—C4121.38 (14)C12—N1—C11—C1163.62 (17)
C2—Fe1—C5—C481.30 (14)C11—N1—C12—C1347.3 (2)
C6—Fe1—C5—C4162.76 (13)C11—N1—C12—C14172.66 (17)
C9—Fe1—C5—C479.66 (16)N1—C12—C13—O168.3 (2)
C8—Fe1—C5—C448.1 (3)C14—C12—C13—O153.8 (2)
C3—Fe1—C5—C437.57 (13)N1—C12—C14—C15179.54 (17)
C7—Fe1—C5—C4166.3 (2)C13—C12—C14—C1554.7 (2)
C10—Fe1—C5—C1118.91 (16)C12—C14—C15—C1678.0 (2)
C2—Fe1—C5—C138.41 (15)C12—C14—C15—C20101.5 (2)
C6—Fe1—C5—C177.52 (17)C20—C15—C16—C170.4 (3)
C9—Fe1—C5—C1160.63 (15)C14—C15—C16—C17179.08 (19)
C8—Fe1—C5—C1167.8 (3)C15—C16—C17—C181.0 (3)
C4—Fe1—C5—C1119.7 (2)C16—C17—C18—C190.7 (3)
C3—Fe1—C5—C182.14 (16)C17—C18—C19—C200.1 (4)
C7—Fe1—C5—C146.6 (3)C16—C15—C20—C190.4 (3)
C1—Fe1—C6—C10119.37 (13)C14—C15—C20—C19179.93 (19)
C2—Fe1—C6—C10161.56 (13)C18—C19—C20—C150.7 (4)
C5—Fe1—C6—C1077.12 (15)O2—C21—C22—C23149.0 (3)
C9—Fe1—C6—C1037.71 (13)O3—C21—C22—C2329.3 (4)
C8—Fe1—C6—C1081.38 (14)C21—C22—C23—C24179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H91···O2i0.951.742.685 (2)173
N1—H92···O30.821.942.747 (2)170
O1—H93···O3i0.871.852.712 (2)172
C16—H16···O1ii0.932.563.447 (3)159
C18—H18···O2iii0.932.583.435 (3)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H19NO)](C4H5O2)
Mr435.33
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)5.9730 (2), 15.3905 (3), 11.7713 (4)
β (°) 100.4986 (13)
V3)1063.99 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.33 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15916, 4864, 4511
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.067, 1.05
No. of reflections4864
No. of parameters265
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.27
Absolute structureFlack (1983), 2329 Friedel pairs
Absolute structure parameter0.016 (12)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H91···O2i0.951.742.685 (2)173
N1—H92···O30.821.942.747 (2)170
O1—H93···O3i0.871.852.712 (2)172
C16—H16···O1ii0.932.563.447 (3)159
C18—H18···O2iii0.932.583.435 (3)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+1.
 

Acknowledgements

This work was supported financially by the Ministry of Education, Youth and Sports of the Czech Republic as a part of the long-term research project No. MSM0021620857.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBraga, D., Curzi, M., Giaffreda, S. L., Grepioni, F., Maini, L., Pettersen, A. & Polito, M. (2008). Ferrocenes: Ligands, Materials and Biomolecules, edited by P. Štěpnička, pp. 465–498, Chichester: Wiley.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHess, A., Brosch, O., Weyhermüller, T. & Metzler-Nolte, N. (1999). J. Organomet. Chem. 589, 75–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠtěpnička, P., Císařová, I. & Ludvík, J. (2004). J. Organomet. Chem. 689, 631–638.  Google Scholar
First citationŠtěpnička, P., Zábranský, M., Císařová, I. & Lamač, M. (2008a). J. Organomet. Chem. 693, 3831–3841.  Google Scholar
First citationŠtěpnička, P., Zábranský, M., Lamač, M., Císařová, I. & Němec, P. (2008b). J. Organomet. Chem. 693, 1779–1786.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1619-m1620
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds