organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­­oxy­methyl-16β,17β-epiestriol-16β,17β-diyl sulfate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn

(Received 8 September 2011; accepted 24 September 2011; online 12 October 2011)

The title compound, C20H26O6S, synthesized by the reaction of 3-O-meth­oxy­methyl-16β-epiestriol and sulfonyl­diimidazole, is composed of a 3-meth­oxy­methyl group connected via two O atoms to a 16,17-O-sulfuryl-16-epiestriol group. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into [001] chains.

Related literature

We have used the title compound as a substrate for the production of F-18 16α-fluoro­estradiol via nucleophilic fluorination, see: Romer et al. (1996[Romer, J., Steinbach, J. & Kasch, H. (1996). Appl. Radiat. Isot. 47, 395-399.]). Fluorine-18 16α-fluoro­estradiol is a valuable radiopharmaceutical for the investigation of the estrogen receptor status of primary and metastatic breast cancer, see: Lim et al. (1996[Lim, J. L., Zheng, L., Berridge, M. S. & Tewson, J. J. (1996). Nucl. Med. Biol. 23, 911-915.]); Romer et al. (1996[Romer, J., Steinbach, J. & Kasch, H. (1996). Appl. Radiat. Isot. 47, 395-399.]). For bond-length data, see: Allen et al. (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26O6S

  • Mr = 394.47

  • Orthorhombic, P 21 21 2

  • a = 10.296 (2) Å

  • b = 23.503 (5) Å

  • c = 7.9060 (16) Å

  • V = 1913.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.942, Tmax = 0.980

  • 3875 measured reflections

  • 3530 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.060

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.182

  • S = 1.00

  • 3530 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1483 Friedel pairs

  • Flack parameter: 0.00 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯O3i 0.96 2.50 3.338 (5) 146
Symmetry code: (i) x, y, z-1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fluorine-18 16alpha-fluoroestradiol has proven to be a valuable radiopharmaceuticalfor the investigation of the estrogen receptor status of primary and metastatic breast cancer. (Lim et al.,1996; Romer et al.,1996). We have prepared 3-methoxymethyl-16β,17β-epiestriol-O-cyclic sulfone and used it as a substrate for the production of F-18 16alpha-fluoroestradiol, via nucleophilic fluorination with fluoride ion. (Romer et al.,1996).

We report here the crystal structure of the titled compound, (I). The molecular strucutre of (I) is shown in Fig. 1. In this structure, ring A (S/O2/C3/C2/O1) and ring B (C1-C5) adopt twist conformation, the mean deviation from plane are 0.1171 Å and 0.1817 Å, respectively. Ring C (C4-C9) and ring D (C8-C13) are two twisty six-mermbered rings, the dihedral angles between the C7/C8/C9 and C5/C4/C6, C10/C11/C12 and C8/C9/C13 are 1.1 (1) ° and 43.3 (2) °, respectively. So it can be found that the ring C is a six-membered ring in its chair form. Ring E (C10/C11/C14-C17) is a planar six-mermbered ring and the mean deviation from plane is 0.0170 Å. In the crystal structure, intermolecular weak C—H···O hydrogen bond (Table 1) links the molecules to form a dimeric unit (Fig. 2), in which it may be effective in the stabilization of the structure.

Related literature top

We have used the title compound as a substrate for the production of F-18 16α-fluoroestradiol via nucleophilic fluorination, see: Romer et al. (1996). Fluorine-18 16α-fluoroestradiol is a valuable radiopharmaceutical for the investigation of the estrogen receptor status of primary and metastatic breast cancer, see: Lim et al. (1996); Romer et al. (1996). For bond-length data, see: Allen et al. (2002).

Experimental top

A mixture of 3-O-Methoxymethyl-l6β-Epiestriol (0.9 mmol) and sodium hydride (3.5 mmol) in anhydrous THF (10 ml) was stirred for 15 min. Added a solution of sulfonyldiimidazole (0.9 mmol) in THF slowly, then stirred for 1 h, filtered through celite and washed with EtOAc to give pure compound (I) (m.p. 425–426 K).(Lim et al.,1996). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were positioned geometrically, with C—H=0.98, 0.97, 0.96 and 0.93 Å for methine, methylene, methyl and aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H)=xUeq(C), where x=1.5 for methyl H atoms and x=1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Dashed lines indicate an intermolecular C—H···O hydrogen bond.
3-Methoxymethyl-16β,17β-epiestriol-16β,17β-diyl sulfate top
Crystal data top
C20H26O6SDx = 1.370 Mg m3
Mr = 394.47Melting point = 425–426 K
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P22abCell parameters from 25 reflections
a = 10.296 (2) Åθ = 9–13°
b = 23.503 (5) ŵ = 0.20 mm1
c = 7.9060 (16) ÅT = 293 K
V = 1913.1 (7) Å3Needle, colorless
Z = 40.30 × 0.20 × 0.10 mm
F(000) = 840
Data collection top
Enraf–Nonius CAD-4
diffractometer
2174 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 280
Tmin = 0.942, Tmax = 0.980l = 90
3875 measured reflections3 standard reflections every 200 reflections
3530 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.1P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3530 reflectionsΔρmax = 0.22 e Å3
244 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 1483 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (18)
Crystal data top
C20H26O6SV = 1913.1 (7) Å3
Mr = 394.47Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 10.296 (2) ŵ = 0.20 mm1
b = 23.503 (5) ÅT = 293 K
c = 7.9060 (16) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2174 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.060
Tmin = 0.942, Tmax = 0.9803 standard reflections every 200 reflections
3875 measured reflections intensity decay: 1%
3530 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.182Δρmax = 0.22 e Å3
S = 1.00Δρmin = 0.17 e Å3
3530 reflectionsAbsolute structure: Flack (1983), 1483 Friedel pairs
244 parametersAbsolute structure parameter: 0.00 (18)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.28012 (13)0.68651 (6)0.51055 (15)0.0796 (4)
O10.3963 (3)0.72326 (15)0.4438 (4)0.0812 (9)
C10.4281 (4)0.8080 (2)0.2704 (6)0.0746 (12)
H1A0.47820.78020.20750.089*
H1B0.48540.83830.30780.089*
O20.1693 (3)0.72213 (15)0.4266 (4)0.0780 (9)
C20.3582 (4)0.7803 (2)0.4211 (6)0.0719 (12)
H2A0.37110.80240.52480.086*
O30.2689 (5)0.6907 (2)0.6849 (4)0.1299 (16)
C30.2124 (4)0.7777 (2)0.3724 (5)0.0673 (11)
H3B0.16360.80760.43110.081*
C40.2067 (4)0.78685 (18)0.1763 (5)0.0635 (10)
O40.2839 (4)0.63112 (14)0.4338 (5)0.1001 (11)
C50.3156 (4)0.83170 (18)0.1630 (6)0.0606 (11)
H5A0.28380.86550.22280.073*
O50.2892 (7)0.9855 (3)0.7260 (7)0.155 (2)
C60.0819 (4)0.8112 (2)0.1126 (7)0.0864 (15)
H6A0.05430.84200.18600.104*
H6B0.01510.78210.11420.104*
O60.2753 (9)1.0346 (3)0.9382 (11)0.190 (3)
C70.0990 (5)0.8339 (3)0.0709 (7)0.0858 (15)
H7A0.11550.80210.14630.103*
H7B0.01910.85210.10690.103*
C80.2109 (5)0.87663 (17)0.0848 (6)0.0705 (11)
H8A0.19020.90820.00840.085*
C90.3391 (4)0.85036 (18)0.0208 (6)0.0670 (12)
H9A0.35920.81670.08910.080*
C100.2324 (6)0.90293 (19)0.2624 (7)0.0827 (14)
C110.3484 (7)0.9168 (2)0.3227 (8)0.0948 (18)
C120.4723 (6)0.9051 (3)0.2252 (9)0.1062 (19)
H12A0.51600.87270.27530.127*
H12B0.52940.93770.23540.127*
C130.4483 (5)0.8932 (2)0.0402 (7)0.0838 (15)
H13A0.42540.92830.01730.101*
H13B0.52680.87840.01120.101*
C140.1150 (8)0.9149 (2)0.3591 (8)0.104 (2)
H14A0.03220.90470.32350.124*
C150.1424 (10)0.9461 (3)0.5261 (9)0.126 (3)
H15A0.07270.95640.59450.151*
C160.2557 (12)0.9581 (3)0.5736 (9)0.120 (3)
C170.3595 (9)0.9437 (2)0.4803 (8)0.110 (2)
H17A0.44200.95190.52180.132*
C180.2327 (12)1.0332 (4)0.7645 (12)0.168 (4)
H18A0.26561.06500.69910.202*
H18B0.13891.03120.75430.202*
C190.1688 (12)1.0446 (4)1.0307 (14)0.196 (5)
H19A0.19081.04371.14870.294*
H19B0.13421.08131.00240.294*
H19C0.10491.01591.00730.294*
C200.2369 (5)0.73070 (18)0.0879 (5)0.0754 (13)
H20A0.23510.73620.03240.113*
H20B0.17320.70280.11910.113*
H20C0.32160.71780.12130.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0769 (7)0.1030 (9)0.0588 (6)0.0014 (7)0.0024 (6)0.0010 (7)
O10.0633 (18)0.096 (2)0.084 (2)0.0045 (17)0.0062 (16)0.0018 (19)
C10.054 (2)0.077 (3)0.093 (3)0.008 (2)0.003 (2)0.007 (3)
O20.0670 (18)0.095 (2)0.0718 (19)0.0097 (17)0.0016 (15)0.0055 (18)
C20.068 (3)0.079 (3)0.069 (3)0.007 (2)0.015 (2)0.025 (3)
O30.115 (3)0.219 (5)0.0553 (19)0.021 (4)0.010 (2)0.008 (2)
C30.059 (2)0.084 (3)0.058 (2)0.014 (2)0.008 (2)0.010 (2)
C40.045 (2)0.081 (3)0.065 (2)0.006 (2)0.0058 (19)0.018 (2)
O40.106 (3)0.093 (2)0.101 (3)0.003 (2)0.002 (2)0.009 (2)
C50.056 (2)0.054 (2)0.072 (3)0.0070 (17)0.0050 (19)0.0186 (19)
O50.205 (6)0.134 (4)0.127 (4)0.023 (4)0.005 (4)0.011 (3)
C60.053 (2)0.100 (4)0.106 (4)0.007 (3)0.005 (2)0.010 (3)
O60.175 (6)0.205 (6)0.192 (7)0.012 (6)0.017 (6)0.012 (5)
C70.065 (3)0.106 (4)0.085 (3)0.002 (3)0.012 (3)0.008 (3)
C80.069 (2)0.060 (2)0.083 (3)0.009 (2)0.017 (3)0.014 (2)
C90.058 (2)0.062 (2)0.082 (3)0.0060 (18)0.002 (2)0.017 (2)
C100.110 (4)0.055 (2)0.083 (3)0.001 (3)0.005 (3)0.019 (2)
C110.121 (5)0.058 (3)0.106 (5)0.014 (3)0.013 (4)0.009 (3)
C120.096 (4)0.092 (4)0.130 (5)0.024 (3)0.013 (4)0.003 (4)
C130.083 (3)0.066 (3)0.103 (4)0.017 (2)0.010 (3)0.006 (3)
C140.138 (5)0.081 (4)0.093 (4)0.020 (4)0.023 (4)0.014 (3)
C150.181 (8)0.108 (5)0.089 (5)0.051 (5)0.011 (5)0.028 (4)
C160.177 (8)0.101 (5)0.081 (4)0.045 (5)0.025 (5)0.007 (4)
C170.185 (7)0.061 (3)0.084 (4)0.018 (4)0.031 (5)0.003 (3)
C180.219 (11)0.135 (7)0.151 (8)0.035 (8)0.000 (8)0.040 (6)
C190.188 (11)0.188 (9)0.213 (12)0.032 (8)0.038 (9)0.028 (9)
C200.104 (4)0.065 (2)0.058 (2)0.009 (3)0.006 (2)0.011 (2)
Geometric parameters (Å, º) top
S—O31.387 (4)C8—C91.542 (6)
S—O41.437 (4)C8—C101.550 (7)
S—O21.563 (3)C8—H8A0.9800
S—O11.567 (3)C9—C131.518 (6)
O1—C21.407 (6)C9—H9A0.9800
C1—C21.537 (7)C10—C111.326 (8)
C1—C51.541 (6)C10—C141.458 (8)
C1—H1A0.9700C11—C171.402 (8)
C1—H1B0.9700C11—C121.515 (9)
O2—C31.444 (6)C12—C131.510 (8)
C2—C31.551 (6)C12—H12A0.9700
C2—H2A0.9800C12—H12B0.9700
C3—C41.567 (6)C13—H13A0.9700
C3—H3B0.9800C13—H13B0.9700
C4—C61.494 (6)C14—C151.536 (10)
C4—C201.526 (6)C14—H14A0.9300
C4—C51.543 (5)C15—C161.258 (11)
C5—C91.537 (6)C15—H15A0.9300
C5—H5A0.9800C16—C171.342 (11)
O5—C181.300 (10)C17—H17A0.9300
O5—C161.410 (9)C18—H18A0.9700
C6—C71.556 (7)C18—H18B0.9700
C6—H6A0.9700C19—H19A0.9600
C6—H6B0.9700C19—H19B0.9600
O6—C191.339 (11)C19—H19C0.9600
O6—C181.442 (10)C20—H20A0.9600
C7—C81.532 (6)C20—H20B0.9600
C7—H7A0.9700C20—H20C0.9600
C7—H7B0.9700
O3—S—O4119.2 (3)C9—C8—H8A106.7
O3—S—O2108.8 (3)C10—C8—H8A106.7
O4—S—O2109.0 (2)C13—C9—C5113.7 (4)
O3—S—O1111.0 (3)C13—C9—C8109.6 (4)
O4—S—O1109.7 (2)C5—C9—C8106.9 (3)
O2—S—O196.84 (17)C13—C9—H9A108.9
C2—O1—S110.8 (3)C5—C9—H9A108.9
C2—C1—C5103.2 (3)C8—C9—H9A108.9
C2—C1—H1A111.1C11—C10—C14120.7 (6)
C5—C1—H1A111.1C11—C10—C8123.5 (5)
C2—C1—H1B111.1C14—C10—C8115.7 (5)
C5—C1—H1B111.1C10—C11—C17120.2 (7)
H1A—C1—H1B109.1C10—C11—C12122.0 (6)
C3—O2—S112.7 (3)C17—C11—C12117.7 (7)
O1—C2—C1111.9 (4)C13—C12—C11112.9 (5)
O1—C2—C3105.3 (4)C13—C12—H12A109.0
C1—C2—C3106.1 (4)C11—C12—H12A109.0
O1—C2—H2A111.1C13—C12—H12B109.0
C1—C2—H2A111.1C11—C12—H12B109.0
C3—C2—H2A111.1H12A—C12—H12B107.8
O2—C3—C2105.0 (4)C12—C13—C9110.0 (4)
O2—C3—C4114.0 (4)C12—C13—H13A109.7
C2—C3—C4106.0 (4)C9—C13—H13A109.7
O2—C3—H3B110.5C12—C13—H13B109.7
C2—C3—H3B110.5C9—C13—H13B109.7
C4—C3—H3B110.5H13A—C13—H13B108.2
C6—C4—C20110.6 (4)C10—C14—C15113.0 (7)
C6—C4—C5109.9 (4)C10—C14—H14A123.5
C20—C4—C5114.3 (4)C15—C14—H14A123.5
C6—C4—C3114.7 (4)C16—C15—C14122.2 (8)
C20—C4—C3109.1 (4)C16—C15—H15A118.9
C5—C4—C397.7 (3)C14—C15—H15A118.9
C9—C5—C1120.4 (4)C15—C16—C17121.2 (8)
C9—C5—C4111.9 (3)C15—C16—O5125.8 (10)
C1—C5—C4105.2 (3)C17—C16—O5112.9 (9)
C9—C5—H5A106.1C16—C17—C11122.5 (8)
C1—C5—H5A106.1C16—C17—H17A118.8
C4—C5—H5A106.1C11—C17—H17A118.8
C18—O5—C16119.0 (8)O5—C18—O696.1 (10)
C4—C6—C7110.4 (4)O5—C18—H18A112.5
C4—C6—H6A109.6O6—C18—H18A112.5
C7—C6—H6A109.6O5—C18—H18B112.5
C4—C6—H6B109.6O6—C18—H18B112.5
C7—C6—H6B109.6H18A—C18—H18B110.1
H6A—C6—H6B108.1O6—C19—H19A109.5
C19—O6—C18106.0 (9)O6—C19—H19B109.5
C8—C7—C6112.2 (4)H19A—C19—H19B109.5
C8—C7—H7A109.2O6—C19—H19C109.5
C6—C7—H7A109.2H19A—C19—H19C109.5
C8—C7—H7B109.2H19B—C19—H19C109.5
C6—C7—H7B109.2C4—C20—H20A109.5
H7A—C7—H7B107.9C4—C20—H20B109.5
C7—C8—C9110.9 (4)H20A—C20—H20B109.5
C7—C8—C10115.7 (4)C4—C20—H20C109.5
C9—C8—C10109.6 (4)H20A—C20—H20C109.5
C7—C8—H8A106.7H20B—C20—H20C109.5
O3—S—O1—C284.0 (4)C6—C7—C8—C10178.2 (4)
O4—S—O1—C2142.3 (3)C1—C5—C9—C1354.0 (5)
O2—S—O1—C229.3 (3)C4—C5—C9—C13178.3 (4)
O3—S—O2—C398.6 (4)C1—C5—C9—C8175.0 (3)
O4—S—O2—C3129.9 (3)C4—C5—C9—C860.7 (4)
O1—S—O2—C316.4 (3)C7—C8—C9—C13178.7 (4)
S—O1—C2—C1146.1 (3)C10—C8—C9—C1349.7 (5)
S—O1—C2—C331.3 (4)C7—C8—C9—C557.8 (4)
C5—C1—C2—O1126.6 (4)C10—C8—C9—C5173.3 (3)
C5—C1—C2—C312.3 (4)C7—C8—C10—C11146.2 (5)
S—O2—C3—C20.0 (4)C9—C8—C10—C1119.9 (6)
S—O2—C3—C4115.6 (3)C7—C8—C10—C1437.1 (6)
O1—C2—C3—O218.9 (4)C9—C8—C10—C14163.4 (4)
C1—C2—C3—O2137.6 (4)C14—C10—C11—C170.6 (7)
O1—C2—C3—C4102.1 (4)C8—C10—C11—C17176.0 (4)
C1—C2—C3—C416.6 (5)C14—C10—C11—C12179.8 (5)
O2—C3—C4—C690.8 (5)C8—C10—C11—C123.3 (8)
C2—C3—C4—C6154.2 (4)C10—C11—C12—C1316.9 (8)
O2—C3—C4—C2033.9 (5)C17—C11—C12—C13162.4 (4)
C2—C3—C4—C2081.1 (5)C11—C12—C13—C947.5 (6)
O2—C3—C4—C5153.0 (4)C5—C9—C13—C12175.0 (4)
C2—C3—C4—C538.0 (4)C8—C9—C13—C1265.5 (5)
C2—C1—C5—C9165.2 (4)C11—C10—C14—C152.4 (7)
C2—C1—C5—C437.7 (4)C8—C10—C14—C15174.5 (4)
C6—C4—C5—C961.2 (5)C10—C14—C15—C161.9 (9)
C20—C4—C5—C963.9 (5)C14—C15—C16—C170.5 (12)
C3—C4—C5—C9178.9 (3)C14—C15—C16—O5178.7 (5)
C6—C4—C5—C1166.4 (4)C18—O5—C16—C1552.1 (13)
C20—C4—C5—C168.6 (4)C18—O5—C16—C17129.6 (9)
C3—C4—C5—C146.5 (4)C15—C16—C17—C112.7 (11)
C20—C4—C6—C771.7 (5)O5—C16—C17—C11179.0 (5)
C5—C4—C6—C755.5 (5)C10—C11—C17—C162.1 (8)
C3—C4—C6—C7164.4 (4)C12—C11—C17—C16177.2 (6)
C4—C6—C7—C854.6 (6)C16—O5—C18—O6167.1 (8)
C6—C7—C8—C956.2 (6)C19—O6—C18—O5130.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O3i0.962.503.338 (5)146
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC20H26O6S
Mr394.47
Crystal system, space groupOrthorhombic, P21212
Temperature (K)293
a, b, c (Å)10.296 (2), 23.503 (5), 7.9060 (16)
V3)1913.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.942, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
3875, 3530, 2174
Rint0.060
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.182, 1.00
No. of reflections3530
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17
Absolute structureFlack (1983), 1483 Friedel pairs
Absolute structure parameter0.00 (18)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O3i0.962.503.338 (5)146
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors would like to thank Professor Hua-qin Wang of Nanjing University for carrying out the X-ray crystallographic analysis.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLim, J. L., Zheng, L., Berridge, M. S. & Tewson, J. J. (1996). Nucl. Med. Biol. 23, 911–915.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRomer, J., Steinbach, J. & Kasch, H. (1996). Appl. Radiat. Isot. 47, 395–399.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds