organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-(3,5-di­methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 23 September 2011; accepted 29 September 2011; online 5 October 2011)

In the crystal of the title compound, C14H13Cl2NO2S, the N—H bond in the C—SO2—NH—C segment is syn to one of the meta-methyl groups in the aniline benzene ring and anti to the other. Further, the conformation of the N—C bond in the C—SO2—NH—C segment is gauche with respect to the S=O bonds. The C—SO2—NH—C torsion angle is 54.9 (2)°. The sulfonyl and aniline benzene rings are tilted relative to each other by 82.8 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds. There are also weak C—H⋯O hydrogen bonds between these dimers.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600-606.]). For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 580, 801-806.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]) and on N-(ar­yl)-aryl­sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]); Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. A, 26, 403-425.]); Rodrigues et al. (2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2712.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13Cl2NO2S

  • Mr = 330.21

  • Monoclinic, C 2/c

  • a = 23.067 (2) Å

  • b = 8.0794 (5) Å

  • c = 16.470 (1) Å

  • β = 101.575 (7)°

  • V = 3007.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 293 K

  • 0.50 × 0.46 × 0.42 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.764, Tmax = 0.796

  • 10045 measured reflections

  • 3067 independent reflections

  • 2555 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.124

  • S = 1.09

  • 3067 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.11 (2) 2.948 (2) 176 (2)
C3—H3⋯O2ii 0.93 2.40 3.264 (2) 154 (1)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The sulfonamide moiety is present in several biologically important compounds. The hydrogen bonding preferences of sulfonamides have also been investigated (Adsmond & Grant, 2001). As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2003), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl)-arylsulfonamides (Gowda & Kumar, 2003; Rodrigues et al., 2011), in the present work, the crystal structure of 2,4-dichloro-N-(3,5-dimethylphenyl)- benzenesulfonamide (I) has been determined (Fig. 1).

In (I), the N—H bond in the C—SO2—NH—C segment is syn to one of the meta-methyl groups in the aniline benzene ring and anti to the other. Further, the conformations of the N—C bonds in the C—SO2—NH—C segment have gauche torsions with respect to the SO bonds.

The molecule is bent at the S atom with C—SO2—NH—C torsion angle of 54.94 (20)°, compared to the value of -60.84 (18)° in 2,4-dichloro-N-(3,4-dimethylphenyl)-benzenesulfonamide (II) (Rodrigues et al., 2011).

The sulfonyl and the aniline benzene rings are tilted relative to each other by 66.4 (1)°, compared to the value of 82.8 (1)° in (II)

The other bond parameters in (I) are similar to those observed in (II) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into inversion-related dimers. There is also weak C-H···O hydrogen bonds between these dimers. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2003), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and on N-(aryl)-arylsulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006); Gowda & Kumar (2003); Rodrigues et al. (2011).

Experimental top

The solution of 1,3-dichlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with 3,5-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dichloro-N- (3,5-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

Prism like light pink single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,4-Dichloro-N-(3,5-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H13Cl2NO2SF(000) = 1360
Mr = 330.21Dx = 1.459 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3755 reflections
a = 23.067 (2) Åθ = 2.7–28.0°
b = 8.0794 (5) ŵ = 0.57 mm1
c = 16.470 (1) ÅT = 293 K
β = 101.575 (7)°Prism, light pink
V = 3007.0 (4) Å30.50 × 0.46 × 0.42 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector
3067 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2628
Tmin = 0.764, Tmax = 0.796k = 1010
10045 measured reflectionsl = 2010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.080P)2 + 1.2587P]
where P = (Fo2 + 2Fc2)/3
3067 reflections(Δ/σ)max = 0.005
186 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.73 e Å3
Crystal data top
C14H13Cl2NO2SV = 3007.0 (4) Å3
Mr = 330.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.067 (2) ŵ = 0.57 mm1
b = 8.0794 (5) ÅT = 293 K
c = 16.470 (1) Å0.50 × 0.46 × 0.42 mm
β = 101.575 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector
3067 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2555 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.796Rint = 0.018
10045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.42 e Å3
3067 reflectionsΔρmin = 0.73 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46825 (3)0.17165 (7)0.04412 (4)0.0546 (2)
Cl20.40676 (4)0.06394 (9)0.31762 (4)0.0740 (3)
S10.44325 (2)0.54969 (6)0.10219 (3)0.03642 (17)
O10.50536 (6)0.55754 (19)0.10210 (9)0.0465 (4)
O20.41625 (8)0.68220 (18)0.13769 (11)0.0528 (4)
N10.41157 (8)0.5283 (2)0.00604 (11)0.0404 (4)
H1N0.4355 (10)0.498 (3)0.0239 (14)0.048*
C10.42987 (8)0.3693 (2)0.15700 (11)0.0324 (4)
C20.44187 (8)0.2097 (2)0.13350 (12)0.0343 (4)
C30.43374 (9)0.0751 (2)0.18203 (13)0.0402 (5)
H30.44120.03180.16590.048*
C40.41432 (9)0.1028 (3)0.25492 (12)0.0423 (5)
C50.40168 (10)0.2587 (3)0.27941 (13)0.0453 (5)
H50.38830.27460.32850.054*
C60.40921 (9)0.3917 (3)0.22994 (12)0.0406 (4)
H60.40030.49780.24560.049*
C70.35076 (9)0.4915 (2)0.02514 (12)0.0383 (4)
C80.33728 (10)0.4228 (3)0.10365 (14)0.0437 (5)
H80.36750.39840.13150.052*
C90.27908 (11)0.3901 (3)0.14115 (16)0.0556 (6)
C100.23500 (11)0.4246 (3)0.09667 (18)0.0612 (7)
H100.19580.40180.12080.073*
C110.24769 (10)0.4914 (3)0.01807 (16)0.0539 (6)
C120.30625 (10)0.5275 (3)0.01805 (14)0.0471 (5)
H120.31550.57500.07050.057*
C130.26428 (15)0.3176 (5)0.2271 (2)0.0863 (10)
H13A0.25710.20100.22350.104*
H13B0.29680.33490.25440.104*
H13C0.22950.37060.25800.104*
C140.19926 (13)0.5276 (4)0.0292 (2)0.0767 (9)
H14A0.18990.42860.05600.092*
H14B0.16460.56600.00860.092*
H14C0.21250.61140.07000.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0766 (4)0.0469 (3)0.0478 (3)0.0090 (3)0.0306 (3)0.0059 (2)
Cl20.1009 (6)0.0607 (4)0.0620 (4)0.0197 (4)0.0203 (4)0.0207 (3)
S10.0393 (3)0.0314 (3)0.0382 (3)0.00622 (18)0.0070 (2)0.00107 (18)
O10.0392 (8)0.0546 (9)0.0446 (8)0.0151 (6)0.0059 (6)0.0006 (7)
O20.0694 (11)0.0308 (7)0.0597 (10)0.0001 (7)0.0167 (8)0.0068 (6)
N10.0357 (9)0.0483 (10)0.0374 (9)0.0037 (7)0.0081 (7)0.0039 (7)
C10.0316 (9)0.0322 (9)0.0332 (9)0.0036 (7)0.0063 (7)0.0024 (7)
C20.0337 (9)0.0357 (10)0.0341 (9)0.0014 (8)0.0082 (7)0.0040 (7)
C30.0422 (11)0.0324 (10)0.0451 (11)0.0033 (8)0.0062 (9)0.0012 (8)
C40.0411 (11)0.0447 (11)0.0393 (10)0.0114 (9)0.0035 (8)0.0077 (9)
C50.0492 (12)0.0544 (13)0.0344 (10)0.0061 (10)0.0134 (9)0.0029 (9)
C60.0444 (11)0.0406 (11)0.0383 (10)0.0020 (9)0.0123 (8)0.0064 (8)
C70.0369 (10)0.0346 (10)0.0422 (10)0.0004 (8)0.0049 (8)0.0104 (8)
C80.0419 (11)0.0406 (11)0.0467 (12)0.0004 (9)0.0044 (9)0.0049 (9)
C90.0465 (13)0.0568 (14)0.0572 (14)0.0022 (11)0.0044 (10)0.0029 (11)
C100.0358 (12)0.0689 (17)0.0728 (17)0.0036 (11)0.0036 (11)0.0097 (13)
C110.0374 (11)0.0594 (14)0.0655 (16)0.0035 (10)0.0117 (10)0.0199 (12)
C120.0429 (12)0.0516 (13)0.0471 (12)0.0007 (9)0.0097 (9)0.0080 (10)
C130.0644 (18)0.106 (3)0.077 (2)0.0030 (17)0.0139 (15)0.0246 (18)
C140.0469 (15)0.100 (2)0.087 (2)0.0041 (14)0.0234 (14)0.0196 (18)
Geometric parameters (Å, º) top
Cl1—C21.7296 (19)C7—C81.384 (3)
Cl2—C41.727 (2)C7—C121.392 (3)
S1—O21.4220 (16)C8—C91.386 (3)
S1—O11.4343 (16)C8—H80.9300
S1—N11.6148 (18)C9—C101.395 (4)
S1—C11.7739 (19)C9—C131.506 (4)
N1—C71.425 (3)C10—C111.379 (4)
N1—H1N0.845 (16)C10—H100.9300
C1—C21.390 (3)C11—C121.393 (3)
C1—C61.390 (3)C11—C141.512 (4)
C2—C31.385 (3)C12—H120.9300
C3—C41.381 (3)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.372 (3)C13—H13C0.9600
C5—C61.380 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
O2—S1—O1119.16 (10)C12—C7—N1123.1 (2)
O2—S1—N1109.55 (10)C7—C8—C9120.6 (2)
O1—S1—N1105.02 (9)C7—C8—H8119.7
O2—S1—C1105.91 (9)C9—C8—H8119.7
O1—S1—C1108.22 (9)C8—C9—C10118.1 (2)
N1—S1—C1108.67 (9)C8—C9—C13120.6 (2)
C7—N1—S1126.50 (14)C10—C9—C13121.3 (2)
C7—N1—H1N116.2 (17)C11—C10—C9122.1 (2)
S1—N1—H1N112.5 (17)C11—C10—H10118.9
C2—C1—C6118.90 (17)C9—C10—H10118.9
C2—C1—S1123.77 (14)C10—C11—C12119.2 (2)
C6—C1—S1117.23 (15)C10—C11—C14121.3 (2)
C3—C2—C1120.70 (17)C12—C11—C14119.5 (3)
C3—C2—Cl1117.57 (15)C7—C12—C11119.3 (2)
C1—C2—Cl1121.72 (15)C7—C12—H12120.3
C4—C3—C2118.62 (19)C11—C12—H12120.3
C4—C3—H3120.7C9—C13—H13A109.5
C2—C3—H3120.7C9—C13—H13B109.5
C5—C4—C3121.99 (18)H13A—C13—H13B109.5
C5—C4—Cl2119.18 (16)C9—C13—H13C109.5
C3—C4—Cl2118.83 (17)H13A—C13—H13C109.5
C4—C5—C6118.80 (19)H13B—C13—H13C109.5
C4—C5—H5120.6C11—C14—H14A109.5
C6—C5—H5120.6C11—C14—H14B109.5
C5—C6—C1120.96 (19)H14A—C14—H14B109.5
C5—C6—H6119.5C11—C14—H14C109.5
C1—C6—H6119.5H14A—C14—H14C109.5
C8—C7—C12120.7 (2)H14B—C14—H14C109.5
C8—C7—N1116.14 (18)
O2—S1—N1—C760.3 (2)Cl2—C4—C5—C6178.44 (17)
O1—S1—N1—C7170.56 (17)C4—C5—C6—C10.7 (3)
C1—S1—N1—C754.9 (2)C2—C1—C6—C51.2 (3)
O2—S1—C1—C2170.58 (16)S1—C1—C6—C5175.34 (16)
O1—S1—C1—C260.58 (18)S1—N1—C7—C8158.16 (16)
N1—S1—C1—C252.96 (18)S1—N1—C7—C1224.4 (3)
O2—S1—C1—C613.03 (18)C12—C7—C8—C90.7 (3)
O1—S1—C1—C6115.81 (16)N1—C7—C8—C9176.8 (2)
N1—S1—C1—C6130.65 (16)C7—C8—C9—C101.5 (3)
C6—C1—C2—C30.4 (3)C7—C8—C9—C13179.1 (3)
S1—C1—C2—C3175.98 (15)C8—C9—C10—C110.9 (4)
C6—C1—C2—Cl1179.47 (15)C13—C9—C10—C11179.8 (3)
S1—C1—C2—Cl13.1 (2)C9—C10—C11—C120.7 (4)
C1—C2—C3—C41.0 (3)C9—C10—C11—C14179.9 (3)
Cl1—C2—C3—C4178.18 (16)C8—C7—C12—C110.9 (3)
C2—C3—C4—C51.5 (3)N1—C7—C12—C11178.2 (2)
C2—C3—C4—Cl2177.60 (15)C10—C11—C12—C71.5 (3)
C3—C4—C5—C60.6 (3)C14—C11—C12—C7179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.11 (2)2.948 (2)176 (2)
C3—H3···O2ii0.932.403.264 (2)154 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H13Cl2NO2S
Mr330.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.067 (2), 8.0794 (5), 16.470 (1)
β (°) 101.575 (7)
V3)3007.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.50 × 0.46 × 0.42
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.764, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
10045, 3067, 2555
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.09
No. of reflections3067
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.73

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.845 (16)2.105 (17)2.948 (2)176 (2)
C3—H3···O2ii0.932.403.264 (2)154 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS fellowship.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. A, 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 580, 801–806.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds