organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-N-(4-methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 2 October 2011; accepted 5 October 2011; online 8 October 2011)

In the title compound, C15H15NO, the two aromatic rings make a dihedral angle of 70.06 (3)°, while the central amide core –NH—C(=O)– is twisted by 30.24 (4) and 40.16 (3)° out of the planes of the 3-methyphenyl and 4-methyphenyl rings, respectively. The methyl groups are disordered over two equally occupied positions. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the a axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711-720.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch.Teil A, 60, 113-120.]) and on N-chloro-aryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Monoclinic, P 21 /c

  • a = 5.2694 (2) Å

  • b = 14.0877 (5) Å

  • c = 16.5665 (9) Å

  • β = 92.588 (4)°

  • V = 1228.54 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.32 × 0.21 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.976, Tmax = 0.989

  • 18822 measured reflections

  • 2800 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 0.83

  • 2800 reflections

  • 158 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.30 (1) 3.0910 (13) 155 (1)
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda & Shetty, 2004), in the present work, the crystal structure of 3-methyl-N-(4-methylphenyl)benzamide (I) has been determined (Fig.1).

In (I), the two aromatic rings make the dihedral angle of 70.06 (3)°, while the central amide core –NH—C(=O)– is twisted by 30.24 (4) ° and 40.16 (3)° out of the planes of the 3-methyphenyl and 4-methyphenyl rings, respectively. The methyl groups are disordered over two equally occupied positions.

Further, the meta-methyl group in the benzoyl ring is positioned syn to the C=O bond, while the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other.

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the a-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloro-arylsulfonamides, see: Gowda & Shetty (2004).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate like colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All hydrogen atoms except amide H atom were placed in calculated positions with C–H distances of 0.93 Å (C-aromatic), 0.96 Å (C-methyl) and constrained to ride on their parent atoms. The methyl groups of the aromatic ring are disordered over two equally occupied positions rotated with respect to each other by 60°. The amide H atom was seen in difference map and was refined with the N—H distance restrained to 0.86 (2) Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.
3-Methyl-N-(4-methylphenyl)benzamide top
Crystal data top
C15H15NOF(000) = 480
Mr = 225.28Dx = 1.218 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.2694 (2) ÅCell parameters from 3030 reflections
b = 14.0877 (5) Åθ = 3.5–28.9°
c = 16.5665 (9) ŵ = 0.08 mm1
β = 92.588 (4)°T = 295 K
V = 1228.54 (9) Å3Plate, colourless
Z = 40.32 × 0.21 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2800 independent reflections
Radiation source: fine-focus sealed tube1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scans with κ offsetsh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1718
Tmin = 0.976, Tmax = 0.989l = 2121
18822 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 0.83 w = 1/[σ2(Fo2) + (0.0511P)2]
where P = (Fo2 + 2Fc2)/3
2800 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C15H15NOV = 1228.54 (9) Å3
Mr = 225.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2694 (2) ŵ = 0.08 mm1
b = 14.0877 (5) ÅT = 295 K
c = 16.5665 (9) Å0.32 × 0.21 × 0.12 mm
β = 92.588 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2800 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1530 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.989Rint = 0.037
18822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.13 e Å3
2800 reflectionsΔρmin = 0.15 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6296 (2)0.39571 (9)0.60497 (7)0.0465 (3)
C20.6781 (2)0.29397 (8)0.58628 (7)0.0440 (3)
C30.5224 (2)0.22617 (9)0.61906 (7)0.0485 (3)
H30.39220.24610.65110.058*
C40.5536 (2)0.12994 (9)0.60585 (8)0.0522 (3)
C50.7430 (2)0.10317 (10)0.55521 (8)0.0611 (4)
H50.76620.03910.54400.073*
C60.8977 (3)0.16938 (11)0.52114 (9)0.0633 (4)
H61.02280.14950.48710.076*
C70.8694 (2)0.26472 (10)0.53688 (8)0.0532 (3)
H70.97710.30900.51470.064*
C80.3925 (3)0.05761 (11)0.64662 (10)0.0733 (5)
H8A0.27240.08950.67900.110*0.50
H8B0.49920.01740.68040.110*0.50
H8C0.30320.01980.60640.110*0.50
H8D0.44410.00500.63150.110*0.50
H8E0.21730.06700.63020.110*0.50
H8F0.41340.06470.70420.110*0.50
C90.8328 (2)0.55183 (9)0.62876 (7)0.0437 (3)
C100.6436 (2)0.61320 (10)0.60252 (8)0.0547 (4)
H100.50770.59110.57000.066*
C110.6557 (2)0.70751 (10)0.62446 (9)0.0592 (4)
H110.52640.74810.60620.071*
C120.8528 (2)0.74372 (9)0.67253 (8)0.0537 (3)
C131.0412 (3)0.68103 (10)0.69753 (9)0.0620 (4)
H131.17770.70310.72980.074*
C141.0328 (2)0.58675 (10)0.67604 (8)0.0568 (4)
H141.16340.54630.69360.068*
C150.8641 (3)0.84701 (10)0.69657 (10)0.0796 (5)
H15A1.01490.85830.72990.119*0.50
H15B0.71730.86270.72620.119*0.50
H15C0.86730.88580.64900.119*0.50
H15D0.71810.87950.67340.119*0.50
H15E1.01570.87510.67720.119*0.50
H15F0.86570.85210.75440.119*0.50
N10.83366 (19)0.45397 (8)0.60708 (6)0.0491 (3)
O10.41508 (15)0.42350 (6)0.61856 (6)0.0643 (3)
H10.980 (2)0.4272 (8)0.6061 (7)0.049 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0427 (7)0.0474 (8)0.0496 (8)0.0044 (6)0.0048 (5)0.0005 (6)
C20.0402 (6)0.0455 (8)0.0461 (7)0.0052 (6)0.0012 (5)0.0019 (6)
C30.0433 (6)0.0493 (9)0.0530 (8)0.0046 (6)0.0034 (5)0.0028 (6)
C40.0513 (7)0.0481 (9)0.0564 (8)0.0021 (6)0.0055 (6)0.0010 (6)
C50.0685 (8)0.0458 (8)0.0686 (10)0.0087 (7)0.0016 (7)0.0068 (7)
C60.0652 (8)0.0600 (10)0.0659 (9)0.0136 (8)0.0167 (7)0.0071 (8)
C70.0529 (7)0.0503 (9)0.0570 (8)0.0034 (6)0.0099 (6)0.0014 (7)
C80.0740 (9)0.0552 (10)0.0908 (12)0.0059 (7)0.0041 (8)0.0095 (8)
C90.0416 (6)0.0416 (8)0.0485 (7)0.0016 (6)0.0070 (5)0.0010 (6)
C100.0492 (7)0.0506 (9)0.0636 (9)0.0015 (6)0.0054 (6)0.0062 (7)
C110.0560 (8)0.0475 (9)0.0742 (10)0.0114 (7)0.0036 (7)0.0106 (7)
C120.0633 (8)0.0447 (8)0.0543 (8)0.0025 (6)0.0156 (7)0.0011 (6)
C130.0612 (8)0.0569 (10)0.0670 (9)0.0020 (7)0.0061 (7)0.0104 (7)
C140.0485 (7)0.0496 (9)0.0717 (9)0.0087 (6)0.0047 (6)0.0045 (7)
C150.1069 (12)0.0512 (10)0.0821 (11)0.0041 (9)0.0190 (9)0.0072 (8)
N10.0377 (5)0.0447 (7)0.0653 (7)0.0049 (5)0.0059 (5)0.0027 (5)
O10.0427 (5)0.0512 (6)0.1003 (7)0.0044 (4)0.0162 (4)0.0083 (5)
Geometric parameters (Å, º) top
C1—O11.2267 (12)C9—C141.3752 (17)
C1—N11.3519 (15)C9—C101.3754 (16)
C1—C21.4908 (17)C9—N11.4247 (16)
C2—C31.3855 (17)C10—C111.3782 (18)
C2—C71.3894 (16)C10—H100.9300
C3—C41.3843 (18)C11—C121.3776 (18)
C3—H30.9300C11—H110.9300
C4—C51.3849 (18)C12—C131.3783 (18)
C4—C81.5056 (19)C12—C151.5091 (19)
C5—C61.3764 (19)C13—C141.3753 (19)
C5—H50.9300C13—H130.9300
C6—C71.3776 (19)C14—H140.9300
C6—H60.9300C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—H8A0.9600C15—H15C0.9600
C8—H8B0.9600C15—H15D0.9600
C8—H8C0.9600C15—H15E0.9600
C8—H8D0.9600C15—H15F0.9600
C8—H8E0.9600N1—H10.857 (10)
C8—H8F0.9600
O1—C1—N1122.68 (12)C14—C9—C10118.76 (12)
O1—C1—C2120.86 (11)C14—C9—N1118.60 (11)
N1—C1—C2116.46 (10)C10—C9—N1122.62 (11)
C3—C2—C7118.98 (12)C9—C10—C11119.89 (12)
C3—C2—C1118.12 (10)C9—C10—H10120.1
C7—C2—C1122.89 (11)C11—C10—H10120.1
C4—C3—C2122.45 (11)C12—C11—C10122.29 (12)
C4—C3—H3118.8C12—C11—H11118.9
C2—C3—H3118.8C10—C11—H11118.9
C3—C4—C5117.15 (12)C11—C12—C13116.76 (13)
C3—C4—C8121.24 (12)C11—C12—C15121.96 (13)
C5—C4—C8121.59 (13)C13—C12—C15121.28 (13)
C6—C5—C4121.34 (13)C14—C13—C12121.79 (13)
C6—C5—H5119.3C14—C13—H13119.1
C4—C5—H5119.3C12—C13—H13119.1
C5—C6—C7120.80 (12)C9—C14—C13120.51 (12)
C5—C6—H6119.6C9—C14—H14119.7
C7—C6—H6119.6C13—C14—H14119.7
C6—C7—C2119.22 (12)C12—C15—H15A109.5
C6—C7—H7120.4C12—C15—H15B109.5
C2—C7—H7120.4H15A—C15—H15B109.5
C4—C8—H8A109.5C12—C15—H15C109.5
C4—C8—H8B109.5H15A—C15—H15C109.5
H8A—C8—H8B109.5H15B—C15—H15C109.5
C4—C8—H8C109.5C12—C15—H15D109.5
H8A—C8—H8C109.5H15A—C15—H15D141.1
H8B—C8—H8C109.5H15B—C15—H15D56.3
C4—C8—H8D109.5H15C—C15—H15D56.3
H8A—C8—H8D141.1C12—C15—H15E109.5
H8B—C8—H8D56.3H15A—C15—H15E56.3
H8C—C8—H8D56.3H15B—C15—H15E141.1
C4—C8—H8E109.5H15C—C15—H15E56.3
H8A—C8—H8E56.3H15D—C15—H15E109.5
H8B—C8—H8E141.1C12—C15—H15F109.5
H8C—C8—H8E56.3H15A—C15—H15F56.3
H8D—C8—H8E109.5H15B—C15—H15F56.3
C4—C8—H8F109.5H15C—C15—H15F141.1
H8A—C8—H8F56.3H15D—C15—H15F109.5
H8B—C8—H8F56.3H15E—C15—H15F109.5
H8C—C8—H8F141.1C1—N1—C9125.62 (10)
H8D—C8—H8F109.5C1—N1—H1116.5 (8)
H8E—C8—H8F109.5C9—N1—H1116.3 (8)
O1—C1—C2—C329.29 (17)C14—C9—C10—C110.67 (18)
N1—C1—C2—C3149.82 (11)N1—C9—C10—C11178.89 (12)
O1—C1—C2—C7149.86 (12)C9—C10—C11—C120.1 (2)
N1—C1—C2—C731.03 (17)C10—C11—C12—C130.58 (19)
C7—C2—C3—C41.41 (18)C10—C11—C12—C15179.75 (13)
C1—C2—C3—C4179.40 (11)C11—C12—C13—C140.4 (2)
C2—C3—C4—C52.49 (19)C15—C12—C13—C14179.96 (13)
C2—C3—C4—C8175.97 (11)C10—C9—C14—C130.89 (19)
C3—C4—C5—C61.58 (19)N1—C9—C14—C13179.17 (12)
C8—C4—C5—C6176.87 (13)C12—C13—C14—C90.4 (2)
C4—C5—C6—C70.4 (2)O1—C1—N1—C93.39 (19)
C5—C6—C7—C21.5 (2)C2—C1—N1—C9175.70 (11)
C3—C2—C7—C60.64 (18)C14—C9—N1—C1139.30 (12)
C1—C2—C7—C6178.50 (11)C10—C9—N1—C142.48 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.30 (1)3.0910 (13)155 (1)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)5.2694 (2), 14.0877 (5), 16.5665 (9)
β (°) 92.588 (4)
V3)1228.54 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.21 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.976, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
18822, 2800, 1530
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 0.83
No. of reflections2800
No. of parameters158
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.857 (10)2.295 (11)3.0910 (13)154.5 (11)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

VV and JK thank the Grant Agencies for their financial support [VEGA Grant Agency of Slovak Ministry of Education 1/0679/11; Research and Development Agency of Slovakia (APVV-0202–10) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer]. VZR thanks the University Grants Commission, Government of India, New Delhi, for award of an RFSMS research fellowship.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.  CAS Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch.Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds