organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)-4-methyl­benzamide hemihydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 3 October 2011; accepted 5 October 2011; online 8 October 2011)

In the title compound, C14H12ClNO·0.5H2O, the water mol­ecule is located on a twofold axis of symmetry. The meta-Cl atom in the aniline ring is positioned anti to the N—H bond. The two benzene rings make a dihedral angle of 40.40 (11)°. The crystal structure is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, which link the mol­ecules into chains along the a axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 679-684.]); Rodrigues et al. (2011[Rodrigues, V. Z., Herich, P., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o2767.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]) and on N-chloro-aryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO·0.5H2O

  • Mr = 254.71

  • Monoclinic, C 2/c

  • a = 7.8078 (3) Å

  • b = 12.1704 (5) Å

  • c = 27.1217 (9) Å

  • β = 93.564 (3)°

  • V = 2572.24 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.76 × 0.34 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.890, Tmax = 0.993

  • 3313 measured reflections

  • 3313 independent reflections

  • 1943 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.142

  • S = 1.01

  • 3313 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 2.11 (2) 2.947 (2) 167 (2)
O2—H2O⋯O1ii 0.84 (2) 1.92 (2) 2.7630 (19) 176 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 1999; Saeed et al., 2010; Rodrigues et al., 2011), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda & Shetty, 2004), in the present work, the crystal structure of N-(3-Chlorophenyl)- 4-methylbenzamide (I) has been determined (Fig.1).

In (I), the water molecule is in special position and connects the different molecules of the compound. Further, the meta-Cl atom in the anilino ring is positioned anti to the N–H bond. The N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other, similar to that observed in N-(2-chlorophenyl)- 4-methylbenzamide (Rodrigues et al., 2011). The C(benzoyl)—NH—C(O)—C(anilino) torsional angle is -172.65 (18)°.

The packing of molecules linked by N1—H1N···O2 and O2—H2O···O1 hydrogen bonds into infinite chains is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (1999); Rodrigues et al. (2011); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloro-arylsulfonamides, see: Gowda & Shetty (2004).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate like colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

The C- and N- bound hydrogen atoms were positioned with idealized geometry using a riding model with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N-H = 0.86 Å. The water hydrogen atoms are symmetry related, were seen in difference Fourier maps and were refined as free. The Uiso(H) values were set at 1.2Ueq(C aromatic, N, O) and 1.5Ueq(C methyl). The disordered methyl group was refined using constrain 138

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O and O—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.
N-(3-Chlorophenyl)-4-methylbenzamide hemihydrate top
Crystal data top
C14H12ClNO·0.5H2OF(000) = 1064
Mr = 254.71Dx = 1.315 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 21518 reflections
a = 7.8078 (3) Åθ = 3.5–29.4°
b = 12.1704 (5) ŵ = 0.29 mm1
c = 27.1217 (9) ÅT = 298 K
β = 93.564 (3)°Plate, colorless
V = 2572.24 (17) Å30.76 × 0.34 × 0.02 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3313 independent reflections
Radiation source: fine-focus sealed tube1943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.4340 pixels mm-1θmax = 29.5°, θmin = 3.5°
ω scansh = 1010
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
k = 1616
Tmin = 0.890, Tmax = 0.993l = 3633
3313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.049P)2 + 2.1399P]
where P = (Fo2 + 2Fc2)/3
3313 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H12ClNO·0.5H2OV = 2572.24 (17) Å3
Mr = 254.71Z = 8
Monoclinic, C2/cMo Kα radiation
a = 7.8078 (3) ŵ = 0.29 mm1
b = 12.1704 (5) ÅT = 298 K
c = 27.1217 (9) Å0.76 × 0.34 × 0.02 mm
β = 93.564 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3313 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
1943 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.993Rint = 0.040
3313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
3313 reflectionsΔρmin = 0.39 e Å3
169 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2326 (2)0.60328 (17)0.27192 (7)0.0465 (5)
C20.2647 (2)0.63298 (17)0.21979 (7)0.0452 (5)
C30.3261 (2)0.73485 (18)0.20695 (7)0.0502 (5)
H3A0.34040.78960.23070.060*
C40.3664 (3)0.7558 (2)0.15888 (8)0.0589 (6)
H4A0.40910.82450.15100.071*
C50.3444 (3)0.6770 (2)0.12247 (8)0.0606 (6)
C60.2797 (3)0.5762 (2)0.13527 (8)0.0639 (7)
H6A0.26150.52260.11110.077*
C70.2413 (3)0.55318 (19)0.18318 (8)0.0566 (6)
H7A0.19980.48420.19100.068*
C80.3887 (4)0.7009 (3)0.07011 (9)0.0856 (10)
H8C0.423 (2)0.6369 (10)0.0554 (3)0.103*0.50
H8B0.476 (2)0.7518 (13)0.07042 (9)0.103*0.50
H8A0.2934 (16)0.7286 (15)0.0525 (3)0.103*0.50
H8F0.424 (2)0.6373 (10)0.0552 (3)0.103*0.50
H8E0.476 (2)0.7517 (13)0.07049 (9)0.103*0.50
H8D0.2940 (16)0.7288 (15)0.0523 (3)0.103*0.50
C90.1532 (2)0.68527 (16)0.35142 (7)0.0427 (5)
C100.1959 (3)0.59716 (19)0.38225 (7)0.0528 (5)
H10A0.24170.53300.36990.063*
C110.1685 (3)0.6074 (2)0.43183 (8)0.0582 (6)
C120.1025 (3)0.6999 (2)0.45181 (8)0.0623 (6)
H12A0.08510.70400.48540.075*
C130.0623 (3)0.7868 (2)0.42085 (8)0.0634 (6)
H13A0.01790.85090.43370.076*
C140.0871 (3)0.78007 (18)0.37099 (8)0.0532 (5)
H14A0.05920.83950.35050.064*
N10.1767 (2)0.68533 (15)0.30024 (6)0.0446 (4)
H1N0.142 (3)0.7439 (19)0.2852 (8)0.051 (6)*
O10.2586 (2)0.50930 (12)0.28769 (6)0.0653 (5)
O20.50000.37191 (16)0.25000.0465 (5)
H2O0.573 (3)0.412 (2)0.2370 (9)0.077 (8)*
Cl10.22644 (12)0.49860 (7)0.47115 (3)0.0998 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0489 (11)0.0454 (12)0.0457 (11)0.0082 (9)0.0073 (9)0.0017 (9)
C20.0453 (11)0.0496 (12)0.0410 (11)0.0132 (9)0.0041 (8)0.0001 (9)
C30.0487 (11)0.0564 (13)0.0457 (12)0.0040 (10)0.0052 (9)0.0042 (10)
C40.0569 (13)0.0665 (15)0.0544 (14)0.0037 (11)0.0113 (10)0.0077 (11)
C50.0581 (13)0.0809 (18)0.0433 (12)0.0259 (12)0.0080 (10)0.0040 (12)
C60.0819 (16)0.0681 (17)0.0413 (12)0.0271 (13)0.0003 (11)0.0106 (11)
C70.0728 (14)0.0489 (13)0.0480 (12)0.0141 (11)0.0024 (10)0.0052 (10)
C80.0910 (19)0.119 (3)0.0488 (14)0.0294 (18)0.0182 (13)0.0114 (15)
C90.0407 (10)0.0486 (12)0.0393 (10)0.0001 (9)0.0055 (8)0.0030 (9)
C100.0592 (13)0.0557 (13)0.0443 (12)0.0075 (10)0.0083 (9)0.0005 (10)
C110.0606 (13)0.0699 (16)0.0444 (12)0.0025 (11)0.0071 (10)0.0079 (11)
C120.0630 (14)0.0837 (18)0.0413 (12)0.0007 (12)0.0118 (10)0.0086 (12)
C130.0734 (15)0.0627 (15)0.0552 (14)0.0057 (12)0.0145 (11)0.0164 (12)
C140.0607 (13)0.0501 (13)0.0494 (12)0.0046 (10)0.0080 (10)0.0047 (10)
N10.0525 (10)0.0426 (10)0.0391 (9)0.0097 (8)0.0062 (7)0.0009 (8)
O10.0982 (12)0.0471 (9)0.0530 (9)0.0223 (8)0.0233 (8)0.0052 (7)
O20.0543 (12)0.0347 (11)0.0513 (12)0.0000.0100 (10)0.000
Cl10.1414 (7)0.1010 (6)0.0589 (4)0.0332 (5)0.0211 (4)0.0276 (4)
Geometric parameters (Å, º) top
C1—O11.233 (2)C8—H8F0.9223
C1—N11.349 (2)C8—H8E0.9222
C1—C21.495 (3)C8—H8D0.9223
C2—C31.382 (3)C9—C141.383 (3)
C2—C71.393 (3)C9—C101.388 (3)
C3—C41.384 (3)C9—N11.411 (2)
C3—H3A0.9300C10—C111.380 (3)
C4—C51.379 (3)C10—H10A0.9300
C4—H4A0.9300C11—C121.365 (3)
C5—C61.380 (4)C11—Cl11.742 (2)
C5—C81.511 (3)C12—C131.374 (3)
C6—C71.380 (3)C12—H12A0.9300
C6—H6A0.9300C13—C141.380 (3)
C7—H7A0.9300C13—H13A0.9300
C8—H8C0.9223C14—H14A0.9300
C8—H8B0.9223N1—H1N0.86 (2)
C8—H8A0.9223O2—H2O0.84 (2)
O1—C1—N1122.76 (19)C5—C8—H8E109.4
O1—C1—C2121.22 (18)H8C—C8—H8E109.4
N1—C1—C2116.01 (18)H8A—C8—H8E109.6
C3—C2—C7118.55 (19)H8F—C8—H8E109.1
C3—C2—C1122.43 (18)C5—C8—H8D109.9
C7—C2—C1118.9 (2)H8C—C8—H8D109.4
C2—C3—C4120.4 (2)H8B—C8—H8D109.1
C2—C3—H3A119.8H8F—C8—H8D109.2
C4—C3—H3A119.8H8E—C8—H8D109.2
C5—C4—C3121.4 (2)C14—C9—C10119.64 (18)
C5—C4—H4A119.3C14—C9—N1116.84 (18)
C3—C4—H4A119.3C10—C9—N1123.51 (18)
C4—C5—C6118.0 (2)C11—C10—C9118.1 (2)
C4—C5—C8120.9 (3)C11—C10—H10A120.9
C6—C5—C8121.1 (2)C9—C10—H10A120.9
C5—C6—C7121.4 (2)C12—C11—C10123.1 (2)
C5—C6—H6A119.3C12—C11—Cl1118.31 (17)
C7—C6—H6A119.3C10—C11—Cl1118.56 (19)
C6—C7—C2120.2 (2)C11—C12—C13118.0 (2)
C6—C7—H7A119.9C11—C12—H12A121.0
C2—C7—H7A119.9C13—C12—H12A121.0
C5—C8—H8C109.5C12—C13—C14120.8 (2)
C5—C8—H8B109.5C12—C13—H13A119.6
H8C—C8—H8B109.5C14—C13—H13A119.6
C5—C8—H8A109.5C13—C14—C9120.2 (2)
H8C—C8—H8A109.5C13—C14—H14A119.9
H8B—C8—H8A109.5C9—C14—H14A119.9
C5—C8—H8F110.0C1—N1—C9128.76 (18)
H8B—C8—H8F109.2C1—N1—H1N116.7 (14)
H8A—C8—H8F109.3C9—N1—H1N114.3 (14)
O1—C1—C2—C3144.7 (2)C14—C9—C10—C110.7 (3)
N1—C1—C2—C334.3 (3)N1—C9—C10—C11179.3 (2)
O1—C1—C2—C731.5 (3)C9—C10—C11—C120.3 (3)
N1—C1—C2—C7149.48 (19)C9—C10—C11—Cl1178.47 (16)
C7—C2—C3—C41.2 (3)C10—C11—C12—C130.3 (4)
C1—C2—C3—C4174.99 (18)Cl1—C11—C12—C13177.90 (18)
C2—C3—C4—C50.9 (3)C11—C12—C13—C140.5 (4)
C3—C4—C5—C60.4 (3)C12—C13—C14—C90.1 (3)
C3—C4—C5—C8179.9 (2)C10—C9—C14—C130.5 (3)
C4—C5—C6—C71.5 (3)N1—C9—C14—C13179.24 (19)
C8—C5—C6—C7179.0 (2)O1—C1—N1—C96.4 (3)
C5—C6—C7—C21.2 (3)C2—C1—N1—C9172.65 (18)
C3—C2—C7—C60.2 (3)C14—C9—N1—C1177.4 (2)
C1—C2—C7—C6176.16 (19)C10—C9—N1—C13.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)2.11 (2)2.947 (2)167 (2)
O2—H2O···O1ii0.84 (2)1.92 (2)2.7630 (19)176 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO·0.5H2O
Mr254.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)7.8078 (3), 12.1704 (5), 27.1217 (9)
β (°) 93.564 (3)
V3)2572.24 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.76 × 0.34 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
Tmin, Tmax0.890, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
3313, 3313, 1943
Rint0.040
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.142, 1.01
No. of reflections3313
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)2.11 (2)2.947 (2)167 (2)
O2—H2O···O1ii0.84 (2)1.92 (2)2.7630 (19)176 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y, z+1/2.
 

Acknowledgements

LK and JK thank the VEGA Grant Agency of Slovak Ministry of Education 1/0679/11, the Research and Development Agency of Slovakia (APVV-0202–10) for financial support of this work and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for award of an RFSMS research fellowship.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 679–684.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Herich, P., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o2767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds