metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1609-m1610

Di­aqua­bis­­(1,10-phenanthroline-κ2N,N′)cadmium sulfate hexa­hydrate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 7 October 2011; accepted 18 October 2011; online 29 October 2011)

The title compound, [Cd(C12H8N2)2(H2O)2]SO4·6H2O, was obtained unexpectedly during an attempt to synthesize a cadmium complex with bidentate bridging sulfate ligands via hydro­thermal synthesis. The CdII metal ion is six-coordinated by two chelating 1,10-phenanthroline ligands and two water mol­ecules, resulting in a distorted octa­hedral geometry for the metal ion. The two chelating N2C2 groups are almost perpendicular to each other [dihedral angle = 86.75 (2)°]. In the crystal, the [Cd(C12H8N2)2(H2O)2]2+ complex cations join with the sulfate anions through two Owater—H⋯Osulfate hydrogen bonds. These ion pairs are further inter­linked into a two-dimensional supermolecular structure via additional O—H⋯O hydrogen bonds.

Related literature

For background to phenanthroline complexes, see: Zhong et al. (2006[Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.], 2009[Zhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.]); Zhu et al. (2006[Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2688-m2689.]); Ni et al. (2010[Ni, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746-m747.]); Zhong (2010[Zhong, K.-L. (2010). Acta Cryst. E66, m247.]); Cui et al. (2010[Cui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.]). For related structures of six-coordinate cadmium complexes and background references, see: Yang et al. (2003[Yang, J., Ma, J.-F., Li, L. & Liu, J.-F. (2003). Acta Cryst. E59, m568-m570.]); Lu et al. (2006[Lu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891-m893.]); Zhong & Cui (2010[Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m817-m818.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C12H8N2)2(H2O)2]SO4·6H2O

  • Mr = 713.02

  • Triclinic, [P \overline 1]

  • a = 10.344 (2) Å

  • b = 12.086 (2) Å

  • c = 13.331 (3) Å

  • α = 71.54 (3)°

  • β = 88.37 (3)°

  • γ = 69.37 (3)°

  • V = 1473.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 223 K

  • 0.30 × 0.25 × 0.12 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB: Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.741, Tmax = 1.000

  • 14255 measured reflections

  • 6631 independent reflections

  • 5729 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.082

  • S = 1.04

  • 6631 reflections

  • 427 parameters

  • 63 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O2W 2.252 (2)
Cd1—O1W 2.286 (2)
Cd1—N4 2.327 (2)
Cd1—N1 2.342 (2)
Cd1—N3 2.350 (2)
Cd1—N2 2.377 (2)
O2W—Cd1—O1W 82.11 (8)
N4—Cd1—N3 71.63 (8)
N1—Cd1—N2 71.32 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.84 (2) 1.84 (2) 2.657 (3) 163 (3)
O2W—H2WB⋯O3 0.81 (3) 1.92 (3) 2.718 (3) 169 (4)
O1W—H1WB⋯O6W 0.85 (2) 1.91 (2) 2.739 (3) 163 (3)
O5W—H5WA⋯O2 0.77 (3) 2.08 (3) 2.816 (3) 161 (5)
O8W—H8WA⋯O1 0.85 (3) 1.88 (3) 2.729 (4) 175 (5)
O4W—H4WA⋯O2 0.87 (2) 1.99 (3) 2.805 (3) 157 (4)
O6W—H6WB⋯O5W 0.84 (2) 2.04 (3) 2.830 (4) 158 (4)
O7W—H7WA⋯O4 0.83 (3) 1.96 (3) 2.791 (4) 172 (6)
O7W—H7WB⋯O8W 0.82 (3) 2.16 (4) 2.901 (5) 151 (6)
O2W—H2WA⋯O3i 0.83 (4) 1.86 (4) 2.671 (3) 164 (3)
O3W—H3WB⋯O8Wii 0.77 (3) 2.29 (5) 2.907 (5) 137 (6)
O5W—H5WB⋯O4Wiii 0.77 (3) 2.07 (3) 2.829 (4) 174 (5)
O6W—H6WA⋯O3Wiv 0.78 (3) 2.03 (3) 2.773 (5) 160 (4)
O4W—H4WB⋯O7Wv 0.79 (3) 2.03 (3) 2.806 (4) 168 (5)
O8W—H8WB⋯O3Wiv 0.83 (3) 2.09 (3) 2.851 (5) 154 (5)
Symmetry codes: (i) -x, -y+2, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently we have synthesized and reported many four-membered ring structural characteristics metal-Phen (1,10-phenanthroline) complexes with bidentate-chelating sulfate auxiliary ligand via a hydrothermal (solvothermal) reaction, such as cobalt complexes (Zhong et al., 2006; Zhong, 2010), nickel complexes (Zhong et al., 2009; Ni et al., 2010), zinc complex (Cui et al., 2010), and manganese complex (Zhu et al., 2006). The title compound [Cd(C12H8N2)2(H2O)2]SO4.6H2O, (I) was obtained during an attempt to synthesize a four-membered ring structural characteristics Cd-complex with bidentate-chelating sulfate ligand by the similar route. Here we report the crystal structure of (I).

In the cation of (I), all bond lengths and angles are normal (Allen et al., 1987). The Cd2+ metal ion has a distorted octahedral coordination environment composed of four N atoms from two chelating Phen ligands and two O atoms from two water molecules. The dihedral angle between the two chelating N2C2 groups is 86.75 (2) Å. The Cd—O bond distances [2.256 - 2.288 Å], the Cd—N bond distances [2.327 (2) - 2.377 (2) Å] and the N—Cd—N bite angles [71.32 (8)–71.63 (8)°] (Table 1.) are in good accord with those observed in many six-coordinate Cd-phen complexes [Cd(phen)2(H2O)2](C4H2O4).4H2O (Yang et al., 2003), [CdSO4(C12H8N2)2].C2H6O2 (Lu et al., 2006) and [CdSO4(C12H8N2)2].C3H8O2 (Zhong & Cui, 2010). The [Cd(C12H8N2)2(H2O)2]2+ complex cations and uncoordinated sulfate anion are connected by intermolecular O—H···O hydrogen bonds with the coordinated water molecules as donors (Fig. 1. and Table 2.). These units are further held together by typical O—H···O hydrogen bonding with uncoordinated water forming a two-dimensional hydrogen bond network (Fig. 2. and Table 2.).

Related literature top

For background to phen complexes, see: Zhong et al. (2006, 2009); Zhu et al. (2006); Ni et al. (2010); Zhong (2010); Cui et al. (2010). For related structures of six-coordinate cadmium complexes and background references, see: Yang et al. (2003); Lu et al. (2006); Zhong & Cui (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental top

0.2 mmol phen, 0.1 mmol 3CdSO4.8H2O and 2.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 72 h, whereupon colorless block-shaped crystals of (I) were obtained.

Refinement top

The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of waters were located in difference map and then allowed to ride on their parent atoms, with O—H = 0.77 (3) - 0.87 (2)Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 30% probability level. The dashed lines represent O—H···O interactions.
[Figure 2] Fig. 2. The packing viewed down the b axis. Dashed lines indicate hydrogen bonds. All H atoms and C atoms of phen have been omitted for clarity.
Diaquabis(1,10-phenanthroline-κ2N,N')cadmium sulfate hexahydrate top
Crystal data top
[Cd(C12H8N2)2(H2O)2]SO4·6H2OZ = 2
Mr = 713.02F(000) = 728
Triclinic, P1Dx = 1.608 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 10.344 (2) ÅCell parameters from 7054 reflections
b = 12.086 (2) Åθ = 3.0–27.5°
c = 13.331 (3) ŵ = 0.88 mm1
α = 71.54 (3)°T = 223 K
β = 88.37 (3)°Block, colorless
γ = 69.37 (3)°0.30 × 0.25 × 0.12 mm
V = 1473.0 (7) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
6631 independent reflections
Radiation source: fine-focus sealed tube5729 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.038
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1113
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
k = 1215
Tmin = 0.741, Tmax = 1.000l = 1717
14255 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0339P)2]
where P = (Fo2 + 2Fc2)/3
6631 reflections(Δ/σ)max = 0.002
427 parametersΔρmax = 0.56 e Å3
63 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cd(C12H8N2)2(H2O)2]SO4·6H2Oγ = 69.37 (3)°
Mr = 713.02V = 1473.0 (7) Å3
Triclinic, P1Z = 2
a = 10.344 (2) ÅMo Kα radiation
b = 12.086 (2) ŵ = 0.88 mm1
c = 13.331 (3) ÅT = 223 K
α = 71.54 (3)°0.30 × 0.25 × 0.12 mm
β = 88.37 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
6631 independent reflections
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
5729 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 1.000Rint = 0.038
14255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04063 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.56 e Å3
6631 reflectionsΔρmin = 0.54 e Å3
427 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.23865 (2)0.943079 (18)0.256252 (15)0.02386 (8)
N10.0916 (2)1.0674 (2)0.34727 (17)0.0264 (5)
N20.3565 (2)0.9003 (2)0.42255 (17)0.0284 (5)
N30.3139 (2)1.1059 (2)0.16124 (17)0.0257 (5)
N40.4515 (2)0.8559 (2)0.19554 (17)0.0261 (5)
C10.0357 (3)1.1479 (3)0.3114 (2)0.0340 (7)
H1A0.07291.15330.24660.041*
C20.1168 (3)1.2248 (3)0.3657 (2)0.0396 (8)
H2A0.20621.27970.33780.047*
C30.0628 (3)1.2183 (3)0.4607 (3)0.0410 (8)
H3A0.11471.27000.49760.049*
C40.0713 (3)1.1334 (3)0.5022 (2)0.0346 (7)
C50.1330 (4)1.1184 (3)0.6030 (2)0.0461 (9)
H5A0.08391.16790.64260.055*
C60.2605 (4)1.0339 (4)0.6410 (3)0.0476 (9)
H6A0.29731.02510.70710.057*
C70.3410 (3)0.9572 (3)0.5826 (2)0.0353 (7)
C80.4746 (4)0.8676 (3)0.6194 (2)0.0450 (9)
H8A0.51430.85510.68580.054*
C90.5462 (3)0.7992 (3)0.5591 (2)0.0425 (8)
H9A0.63540.74090.58270.051*
C100.4836 (3)0.8180 (3)0.4607 (2)0.0357 (7)
H10A0.53310.77050.41980.043*
C110.2847 (3)0.9702 (3)0.4822 (2)0.0277 (6)
C120.1462 (3)1.0590 (3)0.4422 (2)0.0268 (6)
C130.2470 (3)1.2273 (3)0.1431 (2)0.0327 (7)
H13A0.15701.25360.16260.039*
C140.3050 (4)1.3174 (3)0.0961 (2)0.0408 (8)
H14A0.25451.40170.08460.049*
C150.4364 (3)1.2801 (3)0.0676 (2)0.0388 (8)
H15A0.47671.33900.03670.047*
C160.5120 (3)1.1517 (3)0.0849 (2)0.0300 (7)
C170.6509 (3)1.1059 (3)0.0573 (2)0.0377 (8)
H17A0.69481.16200.02610.045*
C180.7190 (3)0.9824 (3)0.0760 (2)0.0364 (8)
H18A0.80930.95470.05750.044*
C190.6555 (3)0.8938 (3)0.1235 (2)0.0286 (6)
C200.7228 (3)0.7645 (3)0.1448 (2)0.0392 (8)
H20A0.81370.73290.12860.047*
C210.6545 (3)0.6858 (3)0.1891 (3)0.0412 (8)
H21A0.69860.60010.20360.049*
C220.5191 (3)0.7339 (3)0.2126 (2)0.0331 (7)
H22A0.47320.67890.24160.040*
C230.5182 (3)0.9356 (2)0.1510 (2)0.0235 (6)
C240.4456 (3)1.0676 (3)0.1316 (2)0.0234 (6)
O2W0.0576 (2)0.9861 (2)0.14208 (17)0.0336 (5)
H2WA0.019 (4)1.053 (3)0.094 (3)0.050*
H2WB0.062 (4)0.932 (3)0.118 (3)0.050*
O1W0.2142 (2)0.75290 (19)0.31802 (16)0.0311 (5)
H1WA0.178 (3)0.737 (3)0.271 (2)0.047*
H1WB0.274 (3)0.687 (3)0.361 (2)0.047*
O10.0996 (2)0.6642 (2)0.20075 (15)0.0408 (5)
O20.2611 (2)0.63092 (19)0.06966 (17)0.0378 (5)
O30.0709 (2)0.82585 (18)0.03451 (16)0.0366 (5)
O40.0277 (2)0.6410 (2)0.04110 (17)0.0399 (5)
O6W0.3939 (3)0.5180 (2)0.43016 (19)0.0463 (6)
H6WB0.417 (4)0.482 (4)0.385 (3)0.069*
H6WA0.343 (4)0.494 (4)0.468 (3)0.069*
O5W0.4613 (3)0.4635 (3)0.2396 (2)0.0555 (7)
H5WA0.395 (3)0.508 (4)0.204 (3)0.083*
H5WB0.523 (4)0.448 (4)0.207 (3)0.083*
O4W0.2984 (3)0.6079 (3)0.1330 (2)0.0674 (8)
H4WA0.312 (5)0.606 (4)0.069 (2)0.101*
H4WB0.238 (4)0.583 (5)0.135 (3)0.101*
O3W0.8044 (3)0.5798 (4)0.4807 (3)0.0749 (9)
H3WA0.854 (5)0.515 (3)0.481 (5)0.112*
H3WB0.853 (5)0.596 (6)0.438 (4)0.112*
O8W0.0051 (4)0.4950 (3)0.3388 (2)0.0779 (9)
H8WA0.031 (5)0.551 (4)0.297 (3)0.117*
H8WB0.071 (4)0.453 (5)0.385 (3)0.117*
O7W0.0580 (3)0.4443 (3)0.1510 (3)0.0870 (11)
H7WA0.038 (6)0.504 (4)0.113 (4)0.130*
H7WB0.038 (7)0.431 (6)0.214 (3)0.130*
S10.11520 (7)0.68913 (6)0.08592 (5)0.02492 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02405 (12)0.02632 (12)0.02400 (12)0.01063 (9)0.00255 (8)0.01025 (9)
N10.0290 (13)0.0283 (13)0.0224 (11)0.0109 (11)0.0028 (10)0.0084 (10)
N20.0339 (14)0.0262 (13)0.0259 (12)0.0116 (11)0.0020 (11)0.0082 (10)
N30.0268 (13)0.0248 (12)0.0275 (12)0.0105 (10)0.0007 (10)0.0099 (10)
N40.0286 (13)0.0247 (12)0.0264 (12)0.0095 (10)0.0031 (10)0.0106 (10)
C10.0363 (17)0.0362 (18)0.0266 (15)0.0101 (14)0.0056 (13)0.0101 (13)
C20.0340 (18)0.0354 (18)0.0404 (18)0.0056 (15)0.0110 (15)0.0092 (15)
C30.047 (2)0.0376 (19)0.0409 (18)0.0159 (16)0.0215 (16)0.0173 (15)
C40.0455 (19)0.0401 (18)0.0292 (15)0.0238 (15)0.0157 (14)0.0176 (14)
C50.061 (2)0.059 (2)0.0351 (18)0.030 (2)0.0143 (17)0.0291 (17)
C60.059 (2)0.071 (3)0.0306 (17)0.035 (2)0.0067 (16)0.0266 (18)
C70.0461 (19)0.0445 (19)0.0247 (15)0.0268 (16)0.0035 (14)0.0118 (14)
C80.055 (2)0.055 (2)0.0286 (16)0.0282 (18)0.0095 (16)0.0072 (16)
C90.0394 (19)0.042 (2)0.0403 (18)0.0124 (16)0.0122 (15)0.0067 (16)
C100.0401 (18)0.0315 (17)0.0334 (16)0.0098 (14)0.0055 (14)0.0104 (14)
C110.0377 (17)0.0311 (16)0.0211 (13)0.0217 (13)0.0040 (12)0.0073 (12)
C120.0371 (16)0.0261 (15)0.0241 (14)0.0185 (13)0.0082 (12)0.0097 (12)
C130.0348 (17)0.0237 (15)0.0368 (16)0.0074 (13)0.0018 (14)0.0096 (13)
C140.050 (2)0.0241 (16)0.0453 (19)0.0130 (15)0.0041 (16)0.0079 (14)
C150.052 (2)0.0333 (17)0.0367 (17)0.0277 (16)0.0009 (16)0.0040 (14)
C160.0375 (17)0.0350 (17)0.0222 (14)0.0219 (14)0.0013 (13)0.0053 (12)
C170.0354 (18)0.057 (2)0.0319 (16)0.0303 (16)0.0060 (14)0.0135 (15)
C180.0282 (16)0.064 (2)0.0262 (15)0.0234 (16)0.0092 (13)0.0192 (15)
C190.0232 (15)0.0425 (18)0.0228 (14)0.0117 (13)0.0027 (12)0.0145 (13)
C200.0288 (16)0.047 (2)0.0394 (18)0.0061 (15)0.0071 (14)0.0199 (16)
C210.0430 (19)0.0298 (17)0.0460 (19)0.0039 (15)0.0056 (16)0.0169 (15)
C220.0375 (17)0.0284 (16)0.0360 (16)0.0132 (14)0.0096 (14)0.0131 (13)
C230.0262 (15)0.0275 (15)0.0181 (13)0.0108 (12)0.0011 (11)0.0076 (11)
C240.0262 (15)0.0289 (15)0.0181 (13)0.0146 (12)0.0005 (11)0.0063 (11)
O2W0.0377 (12)0.0284 (12)0.0332 (12)0.0104 (10)0.0083 (10)0.0089 (9)
O1W0.0390 (12)0.0269 (11)0.0285 (11)0.0146 (9)0.0019 (9)0.0072 (9)
O10.0566 (15)0.0506 (14)0.0293 (11)0.0352 (12)0.0067 (10)0.0138 (10)
O20.0272 (11)0.0372 (12)0.0456 (12)0.0072 (9)0.0030 (10)0.0140 (10)
O30.0444 (13)0.0238 (11)0.0379 (12)0.0094 (10)0.0021 (10)0.0078 (9)
O40.0438 (13)0.0506 (14)0.0438 (12)0.0291 (11)0.0066 (10)0.0264 (11)
O6W0.0453 (15)0.0450 (15)0.0432 (15)0.0153 (12)0.0018 (11)0.0079 (12)
O5W0.0495 (17)0.0530 (17)0.0506 (16)0.0061 (14)0.0082 (12)0.0123 (13)
O4W0.069 (2)0.094 (2)0.0545 (16)0.0371 (16)0.0106 (15)0.0366 (17)
O3W0.0580 (19)0.074 (2)0.084 (2)0.0234 (16)0.0179 (16)0.0151 (19)
O8W0.078 (2)0.080 (2)0.067 (2)0.0471 (19)0.0083 (16)0.0079 (16)
O7W0.0522 (18)0.0461 (18)0.166 (3)0.0217 (15)0.038 (2)0.037 (2)
S10.0263 (4)0.0244 (4)0.0272 (3)0.0119 (3)0.0018 (3)0.0094 (3)
Geometric parameters (Å, º) top
Cd1—O2W2.252 (2)C14—H14A0.9300
Cd1—O1W2.286 (2)C15—C161.415 (4)
Cd1—N42.327 (2)C15—H15A0.9300
Cd1—N12.342 (2)C16—C241.400 (4)
Cd1—N32.350 (2)C16—C171.430 (4)
Cd1—N22.377 (2)C17—C181.349 (4)
N1—C11.321 (4)C17—H17A0.9300
N1—C121.361 (3)C18—C191.423 (4)
N2—C101.331 (4)C18—H18A0.9300
N2—C111.359 (4)C19—C201.404 (4)
N3—C131.327 (3)C19—C231.410 (4)
N3—C241.366 (4)C20—C211.358 (5)
N4—C221.336 (3)C20—H20A0.9300
N4—C231.356 (4)C21—C221.384 (4)
C1—C21.390 (4)C21—H21A0.9300
C1—H1A0.9300C22—H22A0.9300
C2—C31.367 (4)C23—C241.444 (4)
C2—H2A0.9300O2W—H2WA0.83 (4)
C3—C41.401 (4)O2W—H2WB0.81 (3)
C3—H3A0.9300O1W—H1WA0.84 (2)
C4—C121.406 (4)O1W—H1WB0.85 (2)
C4—C51.435 (4)O1—S11.479 (2)
C5—C61.342 (5)O2—S11.466 (2)
C5—H5A0.9300O3—S11.476 (2)
C6—C71.427 (4)O4—S11.462 (2)
C6—H6A0.9300O6W—H6WB0.84 (2)
C7—C81.404 (4)O6W—H6WA0.78 (3)
C7—C111.415 (4)O5W—H5WA0.77 (3)
C8—C91.354 (5)O5W—H5WB0.77 (3)
C8—H8A0.9300O4W—H4WA0.87 (2)
C9—C101.396 (4)O4W—H4WB0.79 (3)
C9—H9A0.9300O3W—H3WA0.76 (3)
C10—H10A0.9300O3W—H3WB0.77 (3)
C11—C121.444 (4)O8W—H8WA0.85 (3)
C13—C141.395 (4)O8W—H8WB0.83 (3)
C13—H13A0.9300O7W—H7WA0.83 (3)
C14—C151.357 (5)O7W—H7WB0.82 (3)
O2W—Cd1—O1W82.11 (8)C7—C11—C12119.2 (3)
O2W—Cd1—N4112.65 (8)N1—C12—C4121.8 (3)
O1W—Cd1—N491.28 (8)N1—C12—C11118.6 (2)
O2W—Cd1—N190.11 (8)C4—C12—C11119.6 (2)
O1W—Cd1—N1106.36 (8)N3—C13—C14123.2 (3)
N4—Cd1—N1153.17 (8)N3—C13—H13A118.4
O2W—Cd1—N398.54 (9)C14—C13—H13A118.4
O1W—Cd1—N3161.85 (8)C15—C14—C13118.9 (3)
N4—Cd1—N371.63 (8)C15—C14—H14A120.5
N1—Cd1—N391.79 (8)C13—C14—H14A120.5
O2W—Cd1—N2156.76 (9)C14—C15—C16120.1 (3)
O1W—Cd1—N289.69 (8)C14—C15—H15A120.0
N4—Cd1—N289.12 (8)C16—C15—H15A120.0
N1—Cd1—N271.32 (8)C24—C16—C15117.3 (3)
N3—Cd1—N295.96 (8)C24—C16—C17119.8 (3)
C1—N1—C12118.5 (2)C15—C16—C17123.0 (3)
C1—N1—Cd1125.28 (18)C18—C17—C16120.7 (3)
C12—N1—Cd1116.18 (18)C18—C17—H17A119.6
C10—N2—C11118.2 (2)C16—C17—H17A119.6
C10—N2—Cd1126.83 (19)C17—C18—C19121.3 (3)
C11—N2—Cd1114.91 (17)C17—C18—H18A119.3
C13—N3—C24118.2 (3)C19—C18—H18A119.3
C13—N3—Cd1126.6 (2)C20—C19—C23117.3 (3)
C24—N3—Cd1114.87 (17)C20—C19—C18123.2 (3)
C22—N4—C23118.1 (2)C23—C19—C18119.5 (3)
C22—N4—Cd1125.5 (2)C21—C20—C19119.7 (3)
C23—N4—Cd1115.83 (17)C21—C20—H20A120.1
N1—C1—C2123.4 (3)C19—C20—H20A120.1
N1—C1—H1A118.3C20—C21—C22119.7 (3)
C2—C1—H1A118.3C20—C21—H21A120.2
C3—C2—C1118.8 (3)C22—C21—H21A120.2
C3—C2—H2A120.6N4—C22—C21122.8 (3)
C1—C2—H2A120.6N4—C22—H22A118.6
C2—C3—C4119.7 (3)C21—C22—H22A118.6
C2—C3—H3A120.1N4—C23—C19122.4 (3)
C4—C3—H3A120.1N4—C23—C24118.5 (2)
C3—C4—C12117.8 (3)C19—C23—C24119.2 (3)
C3—C4—C5122.8 (3)N3—C24—C16122.3 (3)
C12—C4—C5119.4 (3)N3—C24—C23118.3 (2)
C6—C5—C4121.0 (3)C16—C24—C23119.5 (3)
C6—C5—H5A119.5Cd1—O2W—H2WA126 (3)
C4—C5—H5A119.5Cd1—O2W—H2WB116 (2)
C5—C6—C7121.7 (3)H2WA—O2W—H2WB106 (3)
C5—C6—H6A119.2Cd1—O1W—H1WA112 (2)
C7—C6—H6A119.2Cd1—O1W—H1WB124 (2)
C8—C7—C11117.3 (3)H1WA—O1W—H1WB112 (3)
C8—C7—C6123.5 (3)H6WB—O6W—H6WA112 (4)
C11—C7—C6119.2 (3)H5WA—O5W—H5WB111 (5)
C9—C8—C7120.5 (3)H4WA—O4W—H4WB108 (3)
C9—C8—H8A119.8H3WA—O3W—H3WB77 (5)
C7—C8—H8A119.8H8WA—O8W—H8WB104 (5)
C8—C9—C10118.7 (3)H7WA—O7W—H7WB110 (6)
C8—C9—H9A120.6O4—S1—O2110.75 (13)
C10—C9—H9A120.6O4—S1—O3109.80 (13)
N2—C10—C9123.3 (3)O2—S1—O3108.90 (13)
N2—C10—H10A118.3O4—S1—O1109.62 (13)
C9—C10—H10A118.3O2—S1—O1109.88 (13)
N2—C11—C7121.9 (3)O3—S1—O1107.83 (13)
N2—C11—C12118.9 (2)
O2W—Cd1—N1—C114.3 (2)C10—N2—C11—C70.3 (4)
O1W—Cd1—N1—C196.1 (2)Cd1—N2—C11—C7179.2 (2)
N4—Cd1—N1—C1134.7 (2)C10—N2—C11—C12179.4 (3)
N3—Cd1—N1—C184.3 (2)Cd1—N2—C11—C121.6 (3)
N2—Cd1—N1—C1180.0 (3)C8—C7—C11—N20.7 (4)
O2W—Cd1—N1—C12169.1 (2)C6—C7—C11—N2179.7 (3)
O1W—Cd1—N1—C1287.3 (2)C8—C7—C11—C12178.5 (3)
N4—Cd1—N1—C1241.9 (3)C6—C7—C11—C121.2 (4)
N3—Cd1—N1—C1292.36 (19)C1—N1—C12—C40.1 (4)
N2—Cd1—N1—C123.33 (18)Cd1—N1—C12—C4176.7 (2)
O2W—Cd1—N2—C10140.1 (3)C1—N1—C12—C11179.3 (3)
O1W—Cd1—N2—C1071.2 (3)Cd1—N1—C12—C113.8 (3)
N4—Cd1—N2—C1020.1 (3)C3—C4—C12—N10.5 (4)
N1—Cd1—N2—C10178.6 (3)C5—C4—C12—N1178.5 (3)
N3—Cd1—N2—C1091.5 (3)C3—C4—C12—C11180.0 (3)
O2W—Cd1—N2—C1141.1 (3)C5—C4—C12—C110.9 (4)
O1W—Cd1—N2—C11110.0 (2)N2—C11—C12—N11.4 (4)
N4—Cd1—N2—C11158.7 (2)C7—C11—C12—N1177.7 (3)
N1—Cd1—N2—C112.57 (19)N2—C11—C12—C4179.1 (3)
N3—Cd1—N2—C1187.3 (2)C7—C11—C12—C41.7 (4)
O2W—Cd1—N3—C1367.9 (2)C24—N3—C13—C140.6 (4)
O1W—Cd1—N3—C13158.6 (2)Cd1—N3—C13—C14172.6 (2)
N4—Cd1—N3—C13179.0 (2)N3—C13—C14—C150.2 (5)
N1—Cd1—N3—C1322.5 (2)C13—C14—C15—C160.4 (4)
N2—Cd1—N3—C1393.9 (2)C14—C15—C16—C240.1 (4)
O2W—Cd1—N3—C24118.70 (17)C14—C15—C16—C17179.7 (3)
O1W—Cd1—N3—C2428.0 (3)C24—C16—C17—C180.2 (4)
N4—Cd1—N3—C247.57 (16)C15—C16—C17—C18179.6 (3)
N1—Cd1—N3—C24150.92 (17)C16—C17—C18—C190.1 (4)
N2—Cd1—N3—C2479.52 (18)C17—C18—C19—C20179.7 (3)
O2W—Cd1—N4—C2288.6 (2)C17—C18—C19—C230.4 (4)
O1W—Cd1—N4—C226.6 (2)C23—C19—C20—C210.7 (4)
N1—Cd1—N4—C22125.4 (2)C18—C19—C20—C21179.2 (3)
N3—Cd1—N4—C22179.7 (2)C19—C20—C21—C220.1 (5)
N2—Cd1—N4—C2283.1 (2)C23—N4—C22—C211.5 (4)
O2W—Cd1—N4—C23100.12 (18)Cd1—N4—C22—C21169.6 (2)
O1W—Cd1—N4—C23177.90 (18)C20—C21—C22—N41.3 (5)
N1—Cd1—N4—C2346.0 (3)C22—N4—C23—C190.6 (4)
N3—Cd1—N4—C238.35 (17)Cd1—N4—C23—C19171.41 (18)
N2—Cd1—N4—C2388.23 (18)C22—N4—C23—C24179.6 (2)
C12—N1—C1—C20.2 (4)Cd1—N4—C23—C248.4 (3)
Cd1—N1—C1—C2176.4 (2)C20—C19—C23—N40.5 (4)
N1—C1—C2—C30.5 (5)C18—C19—C23—N4179.4 (2)
C1—C2—C3—C41.1 (5)C20—C19—C23—C24179.3 (2)
C2—C3—C4—C121.1 (5)C18—C19—C23—C240.8 (4)
C2—C3—C4—C5177.9 (3)C13—N3—C24—C161.1 (4)
C3—C4—C5—C6178.5 (3)Cd1—N3—C24—C16172.87 (19)
C12—C4—C5—C60.5 (5)C13—N3—C24—C23179.8 (2)
C4—C5—C6—C71.1 (5)Cd1—N3—C24—C236.3 (3)
C5—C6—C7—C8179.9 (4)C15—C16—C24—N30.9 (4)
C5—C6—C7—C110.3 (5)C17—C16—C24—N3178.9 (2)
C11—C7—C8—C91.4 (5)C15—C16—C24—C23180.0 (2)
C6—C7—C8—C9179.0 (3)C17—C16—C24—C230.2 (4)
C7—C8—C9—C101.2 (5)N4—C23—C24—N31.4 (3)
C11—N2—C10—C90.5 (5)C19—C23—C24—N3178.4 (2)
Cd1—N2—C10—C9179.3 (2)N4—C23—C24—C16179.5 (2)
C8—C9—C10—N20.2 (5)C19—C23—C24—C160.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.84 (2)1.84 (2)2.657 (3)163 (3)
O2W—H2WB···O30.81 (3)1.92 (3)2.718 (3)169 (4)
O1W—H1WB···O6W0.85 (2)1.91 (2)2.739 (3)163 (3)
O5W—H5WA···O20.77 (3)2.08 (3)2.816 (3)161 (5)
O8W—H8WA···O10.85 (3)1.88 (3)2.729 (4)175 (5)
O4W—H4WA···O20.87 (2)1.99 (3)2.805 (3)157 (4)
O6W—H6WB···O5W0.84 (2)2.04 (3)2.830 (4)158 (4)
O7W—H7WA···O40.83 (3)1.96 (3)2.791 (4)172 (6)
O7W—H7WB···O8W0.82 (3)2.16 (4)2.901 (5)151 (6)
O2W—H2WA···O3i0.83 (4)1.86 (4)2.671 (3)164 (3)
O3W—H3WB···O8Wii0.77 (3)2.29 (5)2.907 (5)137 (6)
O5W—H5WB···O4Wiii0.77 (3)2.07 (3)2.829 (4)174 (5)
O6W—H6WA···O3Wiv0.78 (3)2.03 (3)2.773 (5)160 (4)
O4W—H4WB···O7Wv0.79 (3)2.03 (3)2.806 (4)168 (5)
O8W—H8WB···O3Wiv0.83 (3)2.09 (3)2.851 (5)154 (5)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C12H8N2)2(H2O)2]SO4·6H2O
Mr713.02
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)10.344 (2), 12.086 (2), 13.331 (3)
α, β, γ (°)71.54 (3), 88.37 (3), 69.37 (3)
V3)1473.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.30 × 0.25 × 0.12
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB: Jacobson, 1998)
Tmin, Tmax0.741, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14255, 6631, 5729
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.082, 1.04
No. of reflections6631
No. of parameters427
No. of restraints63
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.54

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—O2W2.252 (2)Cd1—N12.342 (2)
Cd1—O1W2.286 (2)Cd1—N32.350 (2)
Cd1—N42.327 (2)Cd1—N22.377 (2)
O2W—Cd1—O1W82.11 (8)N1—Cd1—N271.32 (8)
N4—Cd1—N371.63 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.84 (2)1.84 (2)2.657 (3)163 (3)
O2W—H2WB···O30.81 (3)1.92 (3)2.718 (3)169 (4)
O1W—H1WB···O6W0.85 (2)1.91 (2)2.739 (3)163 (3)
O5W—H5WA···O20.77 (3)2.08 (3)2.816 (3)161 (5)
O8W—H8WA···O10.85 (3)1.88 (3)2.729 (4)175 (5)
O4W—H4WA···O20.87 (2)1.99 (3)2.805 (3)157 (4)
O6W—H6WB···O5W0.84 (2)2.04 (3)2.830 (4)158 (4)
O7W—H7WA···O40.83 (3)1.96 (3)2.791 (4)172 (6)
O7W—H7WB···O8W0.82 (3)2.16 (4)2.901 (5)151 (6)
O2W—H2WA···O3i0.83 (4)1.86 (4)2.671 (3)164 (3)
O3W—H3WB···O8Wii0.77 (3)2.29 (5)2.907 (5)137 (6)
O5W—H5WB···O4Wiii0.77 (3)2.07 (3)2.829 (4)174 (5)
O6W—H6WA···O3Wiv0.78 (3)2.03 (3)2.773 (5)160 (4)
O4W—H4WB···O7Wv0.79 (3)2.03 (3)2.806 (4)168 (5)
O8W—H8WB···O3Wiv0.83 (3)2.09 (3)2.851 (5)154 (5)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z.
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010–17).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891–m893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNi, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746–m747.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Li, L. & Liu, J.-F. (2003). Acta Cryst. E59, m568–m570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2010). Acta Cryst. E66, m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m817–m818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2688–m2689.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1609-m1610
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds