metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(4-bromo­benzoato-κO)zinc]-μ-1,2-bis­­(4-pyrid­yl)ethene-κ2N:N′] aceto­nitrile monosolvate]

aCollege of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, People's Republic of China
*Correspondence e-mail: niyali@chnu.edu.cn

(Received 10 October 2011; accepted 12 October 2011; online 22 October 2011)

In the title coordination compound, {[Zn(C7H4BrO2)2(C12H10N2)]·CH3CN}n, the ZnII atom is four-coordinated in a distorted tetra­hedral environment by two carboxyl­ate O atoms from two different 4-bromo­benzoate (bpe) ligands and two N atoms from two symmetry-related 1,2-bis­(4-pyrid­yl)ethene ligands. The ZnII atoms are bridged by the bpe ligands, which lie across centres of inversion, forming a zigzag chain along [001]. The void space of each unit cell is occupied by an acetonitrile solvent mol­ecule, which is connected to the complex mol­ecule by a weak C—H⋯N hydrogen bond.

Related literature

For zigzag chains constructed by ZnII, mono-carboxyl­ate ligands and dipyridyl ligands, see: Gao et al. (2010[Gao, Y., Yang, X., Zhang, J., Li, G. & Zhang, H. (2010). J. Coord. Chem. 63, 3413-3422.]); Kwak et al. (2009[Kwak, H., Lee, S. H., Kim, S. H., Lee, Y. M., Park, B. K., Lee, Y. J., Jun, J. Y., Kim, C., Kim, S. J. & Kim, Y. (2009). Polyhedron, 28, 553-561.]); Ng et al. (2004[Ng, M. T., Deivaraj, T. C., Klooster, W. T., Mclntyre, G. J. & Vittal, J. J. (2004). Chem. Eur. J. 10, 5853-5859.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4BrO2)2(C12H10N2)]·C2H3N

  • Mr = 688.67

  • Triclinic, [P \overline 1]

  • a = 6.2738 (13) Å

  • b = 11.852 (2) Å

  • c = 19.496 (4) Å

  • α = 105.25 (3)°

  • β = 94.63 (3)°

  • γ = 99.87 (3)°

  • V = 1365.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.86 mm−1

  • T = 223 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Rigaku MercuryCCD area-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.512, Tmax = 0.699

  • 13203 measured reflections

  • 6152 independent reflections

  • 3934 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.110

  • S = 1.05

  • 6152 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N3 0.94 2.53 3.436 (8) 162

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, a large number of coordination polymers assembled from carboxylates and pyridyl-like ligands have been extensively investigated. Among these coordination polymers, most of them are constructed by polycarboxylates and dipyridyl ligands, the complexes assembled from mono-carboxylate and dipyridyl ligands are still rare.

In this work, 4-bromobenzoate (BBA) and 1,2-bis(4-pyridyl)ethene (bpe) were employed to react with ZnII and thus afford the title complex, {[Zn(C7H4O2Br)2(C12H10N2)].(C2H3N)}n (I). In (I), the ZnII atom lies on a twofold rotation axis that relates one BBA ligand to the other as well as one bpe ligand to the other; the coordination geometry is a distorted tetrahedron (Fig. 1). The Zn—O (1.958 (3) – 1.985 (4) Å) and Zn—N (2.049 (3) – 2.060 (3) Å) bond lengths are comparable to those reported for similar complexes (Gao et al., 2010; Kwak et al., 2009; Ng et al., 2004). The ZnII centres are linked by the bpe ligands to form a one-dimensional zigzag chain (Fig. 2). A non-coordinated solvent molecule of acetonitrile occupies the interstitial voids within the unit cell. It is noted that there is a weak C12—H12···N3 (Table 1) intermolecular hydrogen bond in the structure (Fig. 2). This weak interaction connects the main molecule with the solvent molecule.

Related literature top

For zigzag chains constructed by ZnII, mono-carboxylate ligands and dipyridyl ligands, see: Gao et al. (2010); Kwak et al. (2009); Ng et al. (2004).

Experimental top

To a 25 ml Teflon-lined stainless steel autoclave was loaded Zn(NO3)2.6H2O (149 mg, 0.5 mmol), 4-bromobenzoic acid (200 mg, 1 mmol), 1,2-bis(4-pyridyl)ethene (91 mg, 0.5 mmol), H2O (8 ml) and acetonitrile (8 ml). The autoclave was sealed and heated in an oven to 423 K for three days, and then cooled to ambient temperature at the rate of 5 K/h to form yellow crystals of (I). Yield: 238 mg (69% yield based on Zn). Anal. calcd. for C28H21Br2N3O4Zn: C, 48.83; H, 3.07; N, 6.10. Found: C, 50.05; H, 3.22; N, 6.37.

Refinement top

The C-bound H atoms were positioned geometrically, with C–H = 0.97 Å (methyl) or 0.94 Å (phenyl, pyridyl and vinyl), and refined as riding, with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Coordination environment of ZnII atom in the compound with nonhydrogen atoms represented by thermal ellipsoids draw at 30% probability level. [Symmetry codes, i: - x - 1, - y + 1, - z + 1; ii: - x, - y + 2, - z + 2.]
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound showing weak intermolecular H-bond with dashed lines.
catena-Poly[[[bis(4-bromobenzoato-κO)zinc]-µ- 1,2-bis(4-pyridyl)ethene-κ2N:N'] acetonitrile monosolvate] top
Crystal data top
[Zn(C7H4BrO2)2(C12H10N2)]·C2H3NZ = 2
Mr = 688.67F(000) = 684
Triclinic, P1Dx = 1.675 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2738 (13) ÅCell parameters from 5974 reflections
b = 11.852 (2) Åθ = 3.2–27.5°
c = 19.496 (4) ŵ = 3.86 mm1
α = 105.25 (3)°T = 223 K
β = 94.63 (3)°Block, yellow
γ = 99.87 (3)°0.20 × 0.10 × 0.10 mm
V = 1365.8 (5) Å3
Data collection top
Rigaku MercuryCCD area-detector
diffractometer
6152 independent reflections
Radiation source: fine-focus sealed tube3934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 78
Tmin = 0.512, Tmax = 0.699k = 1515
13203 measured reflectionsl = 2521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0378P)2]
where P = (Fo2 + 2Fc2)/3
6152 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Zn(C7H4BrO2)2(C12H10N2)]·C2H3Nγ = 99.87 (3)°
Mr = 688.67V = 1365.8 (5) Å3
Triclinic, P1Z = 2
a = 6.2738 (13) ÅMo Kα radiation
b = 11.852 (2) ŵ = 3.86 mm1
c = 19.496 (4) ÅT = 223 K
α = 105.25 (3)°0.20 × 0.10 × 0.10 mm
β = 94.63 (3)°
Data collection top
Rigaku MercuryCCD area-detector
diffractometer
6152 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3934 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.699Rint = 0.045
13203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
6152 reflectionsΔρmin = 0.54 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.44987 (7)0.71792 (4)0.71734 (3)0.03921 (15)
Br11.37712 (10)1.24685 (5)0.59537 (3)0.0756 (2)
Br20.94349 (9)0.17043 (4)0.87084 (3)0.06577 (18)
N10.1772 (5)0.6343 (3)0.64483 (16)0.0374 (8)
N20.3188 (5)0.8162 (3)0.80109 (18)0.0401 (8)
O10.6984 (7)0.8429 (3)0.7125 (3)0.0948 (15)
O20.4838 (8)0.8466 (5)0.6190 (4)0.148 (3)
O30.6068 (4)0.5980 (2)0.73677 (15)0.0438 (7)
O40.3088 (5)0.5406 (3)0.78312 (16)0.0513 (8)
C10.1024 (7)0.5156 (4)0.6262 (2)0.0431 (10)
H10.18530.46770.64380.052*
C20.0907 (7)0.4620 (4)0.5825 (2)0.0412 (10)
H20.13790.37880.57110.049*
C30.2171 (6)0.5292 (3)0.5550 (2)0.0387 (10)
C40.1384 (7)0.6510 (4)0.5738 (2)0.0449 (11)
H40.21820.70060.55670.054*
C50.0578 (7)0.6997 (4)0.6177 (2)0.0455 (11)
H50.10990.78250.62910.055*
C60.4231 (6)0.4716 (4)0.5084 (2)0.0398 (10)
H60.44890.38830.48870.048*
C70.4393 (7)0.9177 (3)0.8455 (2)0.0448 (11)
H70.57970.94550.83550.054*
C80.3661 (7)0.9821 (4)0.9046 (2)0.0445 (11)
H80.45491.05370.93340.053*
C90.1640 (7)0.9436 (4)0.9224 (2)0.0419 (10)
C100.0358 (7)0.8385 (4)0.8758 (2)0.0500 (11)
H100.10540.80950.88460.060*
C110.1194 (7)0.7783 (4)0.8169 (2)0.0495 (11)
H110.03290.70750.78630.059*
C120.0908 (7)1.0147 (4)0.9876 (2)0.0475 (11)
H120.18361.08721.01320.057*
C130.6547 (13)0.8825 (6)0.6615 (5)0.094 (2)
C140.8324 (9)0.9765 (4)0.6480 (3)0.0626 (15)
C150.7939 (9)1.0245 (5)0.5934 (3)0.0739 (16)
H150.65591.00150.56560.089*
C160.9529 (8)1.1066 (4)0.5776 (3)0.0633 (14)
H160.92351.14010.54010.076*
C171.1540 (8)1.1382 (4)0.6178 (3)0.0521 (12)
C181.1993 (8)1.0931 (4)0.6739 (3)0.0566 (12)
H181.33771.11650.70150.068*
C191.0344 (9)1.0115 (4)0.6889 (3)0.0620 (14)
H191.06150.98000.72750.074*
C200.4967 (7)0.5330 (3)0.7693 (2)0.0388 (10)
C210.6034 (6)0.4408 (3)0.7914 (2)0.0381 (9)
C220.5102 (7)0.3804 (4)0.8367 (2)0.0505 (11)
H220.37780.39590.85250.061*
C230.6067 (7)0.2979 (4)0.8591 (2)0.0529 (12)
H230.54310.25790.89040.063*
C240.7997 (7)0.2758 (3)0.8343 (2)0.0439 (10)
C250.8937 (7)0.3311 (4)0.7881 (2)0.0484 (11)
H251.02330.31300.77100.058*
C260.7951 (7)0.4148 (4)0.7667 (2)0.0451 (10)
H260.85900.45410.73510.054*
C270.8391 (11)1.4073 (6)1.0550 (3)0.099 (2)
H27A0.89721.44111.10530.148*
H27B0.83511.47121.03270.148*
H27C0.93151.35571.03130.148*
C280.6195 (13)1.3385 (6)1.0485 (3)0.092 (2)
N30.4488 (11)1.2851 (5)1.0428 (3)0.121 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0397 (3)0.0422 (3)0.0404 (3)0.0136 (2)0.0121 (2)0.0142 (2)
Br10.0754 (4)0.0562 (3)0.1030 (5)0.0027 (3)0.0328 (3)0.0365 (3)
Br20.0704 (4)0.0566 (3)0.0812 (4)0.0200 (3)0.0006 (3)0.0365 (3)
N10.046 (2)0.0385 (18)0.0321 (18)0.0153 (17)0.0117 (16)0.0110 (15)
N20.0378 (19)0.0420 (19)0.043 (2)0.0104 (17)0.0123 (16)0.0129 (16)
O10.129 (4)0.051 (2)0.130 (4)0.029 (2)0.092 (3)0.041 (2)
O20.072 (3)0.126 (4)0.265 (8)0.003 (3)0.060 (4)0.093 (5)
O30.0402 (16)0.0477 (17)0.0550 (18)0.0112 (14)0.0136 (14)0.0302 (15)
O40.0408 (17)0.064 (2)0.063 (2)0.0195 (15)0.0179 (15)0.0325 (16)
C10.045 (2)0.046 (3)0.044 (2)0.018 (2)0.015 (2)0.016 (2)
C20.046 (2)0.036 (2)0.044 (2)0.008 (2)0.015 (2)0.0129 (19)
C30.041 (2)0.042 (2)0.036 (2)0.009 (2)0.0153 (19)0.0131 (19)
C40.045 (2)0.041 (2)0.051 (3)0.015 (2)0.006 (2)0.012 (2)
C50.050 (3)0.035 (2)0.051 (3)0.015 (2)0.012 (2)0.006 (2)
C60.041 (2)0.042 (2)0.036 (2)0.0057 (19)0.0120 (19)0.0109 (18)
C70.044 (2)0.038 (2)0.051 (3)0.004 (2)0.014 (2)0.010 (2)
C80.054 (3)0.038 (2)0.043 (2)0.014 (2)0.012 (2)0.0110 (19)
C90.046 (3)0.047 (2)0.041 (2)0.022 (2)0.011 (2)0.016 (2)
C100.036 (2)0.056 (3)0.059 (3)0.012 (2)0.019 (2)0.012 (2)
C110.044 (3)0.051 (3)0.052 (3)0.012 (2)0.008 (2)0.009 (2)
C120.052 (3)0.042 (2)0.052 (3)0.012 (2)0.012 (2)0.017 (2)
C130.091 (5)0.056 (4)0.156 (7)0.031 (4)0.083 (5)0.037 (4)
C140.064 (3)0.043 (3)0.097 (4)0.021 (3)0.050 (3)0.030 (3)
C150.053 (3)0.066 (3)0.108 (5)0.013 (3)0.021 (3)0.030 (3)
C160.063 (3)0.060 (3)0.080 (4)0.017 (3)0.017 (3)0.037 (3)
C170.056 (3)0.041 (2)0.070 (3)0.013 (2)0.027 (3)0.027 (2)
C180.065 (3)0.047 (3)0.062 (3)0.012 (2)0.017 (3)0.021 (2)
C190.088 (4)0.046 (3)0.068 (3)0.023 (3)0.038 (3)0.030 (3)
C200.041 (2)0.037 (2)0.036 (2)0.0059 (19)0.0045 (19)0.0066 (19)
C210.033 (2)0.041 (2)0.041 (2)0.0015 (18)0.0040 (18)0.0168 (19)
C220.039 (2)0.064 (3)0.058 (3)0.012 (2)0.018 (2)0.030 (2)
C230.053 (3)0.061 (3)0.057 (3)0.012 (2)0.014 (2)0.037 (2)
C240.046 (3)0.038 (2)0.050 (3)0.007 (2)0.003 (2)0.018 (2)
C250.041 (2)0.051 (3)0.059 (3)0.009 (2)0.012 (2)0.025 (2)
C260.043 (2)0.045 (2)0.055 (3)0.008 (2)0.014 (2)0.026 (2)
C270.115 (5)0.091 (4)0.079 (4)0.020 (4)0.035 (4)0.023 (3)
C280.127 (6)0.076 (4)0.057 (4)0.017 (4)0.019 (4)0.014 (3)
N30.120 (5)0.114 (5)0.089 (4)0.053 (4)0.012 (4)0.011 (3)
Geometric parameters (Å, º) top
Zn1—O31.958 (3)C10—H100.9400
Zn1—O11.985 (4)C11—H110.9400
Zn1—N12.049 (3)C12—C12ii1.302 (8)
Zn1—N22.060 (3)C12—H120.9400
Br1—C171.894 (5)C13—C141.526 (8)
Br2—C241.906 (4)C14—C151.357 (7)
N1—C51.338 (5)C14—C191.377 (7)
N1—C11.345 (5)C15—C161.382 (7)
N2—C71.342 (5)C15—H150.9400
N2—C111.343 (5)C16—C171.367 (7)
O1—C131.236 (9)C16—H160.9400
O2—C131.238 (9)C17—C181.367 (7)
O3—C201.272 (5)C18—C191.396 (7)
O4—C201.243 (5)C18—H180.9400
C1—C21.372 (6)C19—H190.9400
C1—H10.9400C20—C211.510 (5)
C2—C31.386 (5)C21—C221.380 (6)
C2—H20.9400C21—C261.384 (5)
C3—C41.382 (5)C22—C231.378 (6)
C3—C61.464 (5)C22—H220.9400
C4—C51.382 (6)C23—C241.381 (6)
C4—H40.9400C23—H230.9400
C5—H50.9400C24—C251.360 (6)
C6—C6i1.333 (7)C25—C261.389 (6)
C6—H60.9400C25—H250.9400
C7—C81.365 (5)C26—H260.9400
C7—H70.9400C27—C281.453 (9)
C8—C91.375 (6)C27—H27A0.9700
C8—H80.9400C27—H27B0.9700
C9—C101.403 (6)C27—H27C0.9700
C9—C121.484 (6)C28—N31.128 (8)
C10—C111.377 (6)
O3—Zn1—O1100.35 (16)O1—C13—O2124.7 (7)
O3—Zn1—N1109.30 (12)O1—C13—C14116.8 (8)
O1—Zn1—N1129.94 (19)O2—C13—C14118.4 (8)
O3—Zn1—N2117.36 (13)C15—C14—C19118.9 (5)
O1—Zn1—N298.90 (14)C15—C14—C13119.7 (7)
N1—Zn1—N2101.82 (13)C19—C14—C13121.3 (6)
C5—N1—C1117.4 (3)C14—C15—C16121.6 (5)
C5—N1—Zn1119.6 (3)C14—C15—H15119.2
C1—N1—Zn1122.9 (3)C16—C15—H15119.2
C7—N2—C11117.4 (4)C17—C16—C15118.6 (5)
C7—N2—Zn1120.1 (3)C17—C16—H16120.7
C11—N2—Zn1122.3 (3)C15—C16—H16120.7
C13—O1—Zn1109.7 (5)C18—C17—C16121.8 (5)
C20—O3—Zn1111.2 (2)C18—C17—Br1118.8 (4)
N1—C1—C2122.2 (4)C16—C17—Br1119.4 (4)
N1—C1—H1118.9C17—C18—C19118.1 (5)
C2—C1—H1118.9C17—C18—H18120.9
C1—C2—C3120.8 (4)C19—C18—H18120.9
C1—C2—H2119.6C14—C19—C18120.9 (5)
C3—C2—H2119.6C14—C19—H19119.6
C4—C3—C2116.7 (4)C18—C19—H19119.6
C4—C3—C6122.7 (4)O4—C20—O3124.0 (4)
C2—C3—C6120.6 (4)O4—C20—C21119.0 (4)
C5—C4—C3119.8 (4)O3—C20—C21117.0 (3)
C5—C4—H4120.1C22—C21—C26118.7 (4)
C3—C4—H4120.1C22—C21—C20120.3 (4)
N1—C5—C4123.0 (4)C26—C21—C20121.0 (4)
N1—C5—H5118.5C23—C22—C21121.6 (4)
C4—C5—H5118.5C23—C22—H22119.2
C6i—C6—C3124.9 (5)C21—C22—H22119.2
C6i—C6—H6117.5C22—C23—C24118.0 (4)
C3—C6—H6117.5C22—C23—H23121.0
N2—C7—C8122.6 (4)C24—C23—H23121.0
N2—C7—H7118.7C25—C24—C23122.2 (4)
C8—C7—H7118.7C25—C24—Br2119.9 (3)
C7—C8—C9120.8 (4)C23—C24—Br2117.9 (4)
C7—C8—H8119.6C24—C25—C26118.9 (4)
C9—C8—H8119.6C24—C25—H25120.6
C8—C9—C10117.0 (4)C26—C25—H25120.6
C8—C9—C12119.5 (4)C21—C26—C25120.5 (4)
C10—C9—C12123.5 (4)C21—C26—H26119.7
C11—C10—C9119.1 (4)C25—C26—H26119.7
C11—C10—H10120.5C28—C27—H27A109.5
C9—C10—H10120.5C28—C27—H27B109.5
N2—C11—C10123.1 (4)H27A—C27—H27B109.5
N2—C11—H11118.5C28—C27—H27C109.5
C10—C11—H11118.5H27A—C27—H27C109.5
C12ii—C12—C9125.7 (6)H27B—C27—H27C109.5
C12ii—C12—H12117.2N3—C28—C27179.3 (7)
C9—C12—H12117.2
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N30.942.533.436 (8)162

Experimental details

Crystal data
Chemical formula[Zn(C7H4BrO2)2(C12H10N2)]·C2H3N
Mr688.67
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)6.2738 (13), 11.852 (2), 19.496 (4)
α, β, γ (°)105.25 (3), 94.63 (3), 99.87 (3)
V3)1365.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.86
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerRigaku MercuryCCD area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.512, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
13203, 6152, 3934
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.110, 1.05
No. of reflections6152
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.54

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N30.942.533.436 (8)162.1
 

Acknowledgements

This work was supported by the research start-up fund for new staff of Huaibei Normal University (600581).

References

First citationGao, Y., Yang, X., Zhang, J., Li, G. & Zhang, H. (2010). J. Coord. Chem. 63, 3413–3422.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKwak, H., Lee, S. H., Kim, S. H., Lee, Y. M., Park, B. K., Lee, Y. J., Jun, J. Y., Kim, C., Kim, S. J. & Kim, Y. (2009). Polyhedron, 28, 553–561.  Web of Science CSD CrossRef CAS Google Scholar
First citationNg, M. T., Deivaraj, T. C., Klooster, W. T., Mclntyre, G. J. & Vittal, J. J. (2004). Chem. Eur. J. 10, 5853–5859.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds