organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(2-chloro­phen­yl)-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile ethanol monosolvate

aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 11 October 2011; accepted 21 October 2011; online 29 October 2011)

In the title compound, C16H13ClN2O2·C2H6O, the fused cyclo­hexene and pyran rings adopt envelope and flattened boat conformations, respectively. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the chromene and ethanol solvent mol­ecules into infinite chains along the c axis, and N—H⋯N hydrogen bonds link these chains into a three-dimensional framework. Weak C—H⋯π inter­actions are also present.

Related literature

For the background, see: Lokaj et al. (1990[Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788-791.]); Marco et al. (1993[Marco, J. L., Martin, G., Martin, N., Martinez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133-7144.]). For crystal structures similar to the title compound, see: Tu et al. (2001[Tu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358-o359.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN2O2·C2H6O

  • Mr = 346.80

  • Triclinic, [P \overline 1]

  • a = 8.7610 (8) Å

  • b = 9.6281 (9) Å

  • c = 10.7951 (11) Å

  • α = 76.878 (1)°

  • β = 83.028 (2)°

  • γ = 77.632 (1)°

  • V = 863.69 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.47 × 0.46 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.896, Tmax = 0.952

  • 4606 measured reflections

  • 3003 independent reflections

  • 1428 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.230

  • S = 0.90

  • 3003 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.19 3.037 (5) 167
N2—H2B⋯O3 0.86 1.99 2.851 (5) 178
O3—H3⋯O1ii 0.82 1.97 2.765 (5) 164
C14—H14BCgiii 0.97 2.96 3.704 (5) 135
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z+1; (iii) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The present investigation is a continuation of our work that includes syntheses and structural studies of polyfunctionalized substituted pyran derivatives, owing to their biological activities (Lokaj et al., 1990; Marco et al., 1993).We obtained the title compound, (I), and reported here its crystal structure in the paper.

In the crystal structure, it is observed that structure unit contains a substituted 5,6,7,8-tetrahydro-4H-chromene, a benzene ring and a ethanol solvate. The pyran ring adopts a sofa conformation, the dihedral angle between the (O2/C8-C11) plane and the C8/C7/C11 plane is 16.14 (4)°. Meanwhile, the (O2/C8-C11) plane forms an angle of 88.55 (13)° with the phenyl plane (C1-C6), which means that the pyran ring and the benzene ring is nearly perpendicular. In the crystal, the nitrile group is typical [NC = 1.148 (5)Å] and the carbonyl group also is reasonable [CO =1.223 (6)Å].

Moreover, the plane (C10-C15) also adopts an chair configuration in the compound, and the dihedral angle between the (C10-C15) plane and the (C13-C15) plane is 46.19 (5)°.

In (I) (Fig. 1), the bond lengths and angles of the main molecule are normal and correspond to those observed in 2-amino-7,7-dimethyl-5-oxo-4-phenyl- 5,6,7,8-tetra-hydro-4H-chromene-3-carbonitrile (Tu et al., 2001).

In the crystal structure, there exist typical intermolecular N-H···N, N—H···O, O—H···O hydrogen bonds and weak C-H···π interactions (Table 1.). Intermolecular N-H···O and O—H···O hydrogen bonds link the molecules and ethanol solvent into infinite chain along c-axis and intermolecular hydrogen bonds link these chains forming three-dimensional framework.

Related literature top

For the background, see: Lokaj et al. (1990); Marco et al. (1993). For crystal structures similar to the title compound, see: Tu et al. (2001).

Experimental top

Malononitrile (5 mmol), 1,3-cyclohexanedione (5 mmol) and 2-chorobenzaldehyde (5 mmol) was dissolved in 20 ml DMF in a round-bottom flask. The mixture was warmed, with agitation, to 423 K over a period of 6 h. The resulting solution was cooled. Crystal of (I) suitable for X-ray diffraction analysis were obtained by recrystallized from ethanol.

Refinement top

All H atoms were placed in geometrically idealized positions (N-H 0.86, O-H 0.82 and C-H 0.93-0.98 Å ) and treated as riding on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C) (C, O, N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. The packing of the title compound. N-H···N, N-H···O and O-H···O interactions are represented with dashed lines.
2-Amino-4-(2-chlorophenyl)-5-oxo-5,6,7,8-tetrahydro- 4H-chromene-3-carbonitrile ethanol monosolvate top
Crystal data top
C16H13ClN2O2·C2H6OZ = 2
Mr = 346.80F(000) = 364
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7610 (8) ÅCell parameters from 821 reflections
b = 9.6281 (9) Åθ = 2.6–25.4°
c = 10.7951 (11) ŵ = 0.24 mm1
α = 76.878 (1)°T = 298 K
β = 83.028 (2)°Block, red
γ = 77.632 (1)°0.47 × 0.46 × 0.21 mm
V = 863.69 (14) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3003 independent reflections
Radiation source: fine-focus sealed tube1428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.896, Tmax = 0.952k = 911
4606 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.126P)2]
where P = (Fo2 + 2Fc2)/3
3003 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C16H13ClN2O2·C2H6Oγ = 77.632 (1)°
Mr = 346.80V = 863.69 (14) Å3
Triclinic, P1Z = 2
a = 8.7610 (8) ÅMo Kα radiation
b = 9.6281 (9) ŵ = 0.24 mm1
c = 10.7951 (11) ÅT = 298 K
α = 76.878 (1)°0.47 × 0.46 × 0.21 mm
β = 83.028 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3003 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1428 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.952Rint = 0.057
4606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0821 restraint
wR(F2) = 0.230H-atom parameters constrained
S = 0.90Δρmax = 0.36 e Å3
3003 reflectionsΔρmin = 0.31 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.94359 (18)0.32844 (18)0.01378 (14)0.0853 (6)
N11.0042 (5)0.4987 (5)0.3508 (4)0.0694 (13)
N20.7142 (4)0.3876 (4)0.6036 (4)0.0543 (11)
H2A0.79120.42950.60510.065*
H2B0.65270.36940.67110.065*
O10.5581 (4)0.2859 (5)0.0845 (3)0.0796 (12)
O20.5602 (3)0.2879 (3)0.5179 (3)0.0531 (9)
O30.5099 (5)0.3347 (6)0.8285 (4)0.1065 (16)
H30.51800.33770.90260.160*
C10.9531 (5)0.1785 (6)0.1361 (5)0.0551 (13)
C21.0586 (6)0.0538 (7)0.1199 (6)0.0659 (15)
H21.12120.05220.04410.079*
C31.0716 (6)0.0672 (7)0.2153 (6)0.0736 (16)
H3A1.14340.15080.20470.088*
C40.9784 (6)0.0667 (6)0.3281 (6)0.0707 (16)
H40.98610.14940.39300.085*
C50.8745 (5)0.0572 (5)0.3432 (5)0.0532 (12)
H50.81390.05770.42010.064*
C60.8560 (4)0.1819 (5)0.2487 (4)0.0443 (11)
C70.7362 (4)0.3145 (5)0.2726 (4)0.0429 (11)
H70.73730.39180.19600.051*
C80.7721 (5)0.3698 (5)0.3836 (4)0.0437 (11)
C90.6906 (5)0.3513 (5)0.4982 (4)0.0437 (11)
C100.5007 (5)0.2644 (5)0.4148 (4)0.0454 (11)
C110.5740 (5)0.2806 (5)0.2992 (4)0.0433 (11)
C120.4933 (5)0.2721 (6)0.1923 (5)0.0561 (13)
C130.3260 (5)0.2516 (7)0.2181 (5)0.0745 (17)
H13A0.30120.20560.15390.089*
H13B0.25700.34590.21150.089*
C140.2971 (6)0.1595 (6)0.3488 (5)0.0670 (15)
H14A0.35670.06160.35230.080*
H14B0.18680.15440.36400.080*
C150.3445 (5)0.2227 (5)0.4516 (5)0.0541 (13)
H15A0.26680.30760.46440.065*
H15B0.34870.15150.53130.065*
C160.8995 (5)0.4412 (5)0.3669 (4)0.0489 (12)
C170.3742 (7)0.2814 (7)0.8216 (6)0.097 (2)
H17A0.33310.32340.73900.117*
H17B0.29490.31080.88650.117*
C180.4070 (11)0.1237 (8)0.8401 (7)0.136 (3)
H18A0.48780.09420.77760.204*
H18B0.31370.09100.83080.204*
H18C0.44120.08170.92400.204*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0840 (11)0.0960 (12)0.0676 (10)0.0272 (9)0.0204 (7)0.0043 (8)
N10.044 (2)0.100 (4)0.076 (3)0.036 (2)0.001 (2)0.025 (3)
N20.046 (2)0.078 (3)0.050 (3)0.029 (2)0.0001 (18)0.021 (2)
O10.060 (2)0.137 (4)0.052 (2)0.040 (2)0.0035 (18)0.023 (2)
O20.0437 (17)0.074 (2)0.050 (2)0.0305 (16)0.0028 (14)0.0154 (17)
O30.096 (3)0.183 (5)0.057 (3)0.070 (3)0.008 (2)0.025 (3)
C10.041 (3)0.071 (4)0.062 (3)0.020 (3)0.003 (2)0.026 (3)
C20.048 (3)0.086 (4)0.075 (4)0.018 (3)0.009 (3)0.041 (4)
C30.050 (3)0.074 (4)0.101 (5)0.003 (3)0.005 (3)0.036 (4)
C40.058 (3)0.069 (4)0.084 (4)0.008 (3)0.010 (3)0.014 (3)
C50.037 (3)0.061 (3)0.061 (3)0.012 (2)0.003 (2)0.014 (3)
C60.027 (2)0.059 (3)0.054 (3)0.018 (2)0.0017 (19)0.018 (2)
C70.031 (2)0.051 (3)0.049 (3)0.016 (2)0.0002 (18)0.008 (2)
C80.033 (2)0.056 (3)0.047 (3)0.017 (2)0.0002 (19)0.013 (2)
C90.031 (2)0.050 (3)0.053 (3)0.013 (2)0.0028 (19)0.012 (2)
C100.037 (2)0.054 (3)0.051 (3)0.017 (2)0.006 (2)0.015 (2)
C110.036 (2)0.054 (3)0.045 (3)0.015 (2)0.000 (2)0.017 (2)
C120.045 (3)0.074 (4)0.057 (3)0.019 (2)0.004 (2)0.020 (3)
C130.038 (3)0.125 (5)0.074 (4)0.027 (3)0.010 (2)0.037 (4)
C140.043 (3)0.091 (4)0.079 (4)0.032 (3)0.001 (2)0.026 (3)
C150.036 (3)0.068 (3)0.062 (3)0.020 (2)0.002 (2)0.015 (3)
C160.035 (2)0.064 (3)0.052 (3)0.014 (2)0.001 (2)0.018 (2)
C170.068 (4)0.131 (7)0.085 (5)0.004 (4)0.002 (3)0.021 (4)
C180.203 (10)0.088 (6)0.102 (6)0.006 (6)0.011 (6)0.020 (5)
Geometric parameters (Å, º) top
Cl1—C11.716 (5)C6—CG1.405 (4)
N1—C161.146 (5)C6—C71.519 (6)
N2—C91.315 (5)C7—C111.505 (5)
N2—H2A0.8600C7—C81.507 (6)
N2—H2B0.8600C7—H70.9800
O1—C121.223 (5)C8—C91.346 (6)
O2—C101.367 (5)C8—C161.405 (6)
O2—C91.379 (5)C10—C111.324 (6)
O3—C171.407 (7)C10—C151.491 (6)
O3—H30.8200C11—C121.450 (6)
C1—CG1.373 (5)C12—C131.505 (6)
C1—C21.381 (7)C13—C141.511 (7)
C1—C61.399 (6)C13—H13A0.9700
C2—C31.363 (7)C13—H13B0.9700
C2—CG1.376 (5)C14—C151.518 (6)
C2—H20.9300C14—H14A0.9700
C3—CG1.376 (6)C14—H14B0.9700
C3—C41.382 (8)C15—H15A0.9700
C3—H3A0.9300C15—H15B0.9700
C4—C51.366 (7)C17—C181.455 (7)
C4—CG1.380 (6)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—CG1.359 (5)C18—H18A0.9600
C5—C61.381 (6)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C9—N2—H2A120.0C11—C10—C15126.5 (4)
C9—N2—H2B120.0O2—C10—C15110.5 (4)
H2A—N2—H2B120.0C10—C11—C12119.2 (4)
C10—O2—C9118.7 (3)C10—C11—C7122.6 (4)
C17—O3—H3109.5C12—C11—C7118.1 (4)
CG—C1—C260.0 (3)O1—C12—C11120.8 (4)
CG—C1—C660.9 (3)O1—C12—C13121.4 (4)
C2—C1—C6120.8 (5)C11—C12—C13117.7 (4)
CG—C1—Cl1178.0 (4)C12—C13—C14112.0 (4)
C2—C1—Cl1118.1 (4)C12—C13—H13A109.2
C6—C1—Cl1121.1 (4)C14—C13—H13A109.2
C3—C2—CG60.3 (3)C12—C13—H13B109.2
C3—C2—C1120.0 (5)C14—C13—H13B109.2
CG—C2—C159.7 (3)H13A—C13—H13B107.9
C3—C2—H2119.8C13—C14—C15110.9 (4)
CG—C2—H2179.7C13—C14—H14A109.5
C1—C2—H2120.1C15—C14—H14A109.5
C2—C3—CG60.3 (3)C13—C14—H14B109.5
C2—C3—C4120.4 (5)C15—C14—H14B109.5
CG—C3—C460.1 (3)H14A—C14—H14B108.1
C2—C3—H3A120.0C10—C15—C14110.6 (4)
CG—C3—H3A179.6C10—C15—H15A109.5
C4—C3—H3A119.6C14—C15—H15A109.5
C5—C4—CG59.3 (3)C10—C15—H15B109.5
C5—C4—C3119.1 (6)C14—C15—H15B109.5
CG—C4—C359.7 (4)H15A—C15—H15B108.1
C5—C4—H4120.3N1—C16—C8178.5 (5)
CG—C4—H4179.5O3—C17—C18111.4 (6)
C3—C4—H4120.6O3—C17—H17A109.3
CG—C5—C460.9 (3)C18—C17—H17A109.3
CG—C5—C661.7 (3)O3—C17—H17B109.3
C4—C5—C6122.6 (5)C18—C17—H17B109.3
CG—C5—H5179.0H17A—C17—H17B108.0
C4—C5—H5118.7C17—C18—H18A109.5
C6—C5—H5118.8C17—C18—H18B109.5
C5—C6—C1117.0 (4)H18A—C18—H18B109.5
C5—C6—CG58.4 (3)C17—C18—H18C109.5
C1—C6—CG58.6 (3)H18A—C18—H18C109.5
C5—C6—C7119.2 (4)H18B—C18—H18C109.5
C1—C6—C7123.7 (4)C5—CG—C1120.4 (3)
CG—C6—C7177.6 (4)C5—CG—C3120.0 (4)
C11—C7—C8108.2 (3)C1—CG—C3119.7 (3)
C11—C7—C6110.9 (3)C5—CG—C2179.3 (3)
C8—C7—C6112.1 (3)C1—CG—C260.3 (3)
C11—C7—H7108.5C3—CG—C259.4 (3)
C8—C7—H7108.5C5—CG—C459.8 (3)
C6—C7—H7108.5C1—CG—C4179.8 (3)
C9—C8—C16118.6 (4)C3—CG—C460.2 (3)
C9—C8—C7123.3 (4)C2—CG—C4119.5 (3)
C16—C8—C7118.0 (4)C5—CG—C659.9 (3)
N2—C9—C8129.3 (4)C1—CG—C660.5 (3)
N2—C9—O2109.7 (4)C3—CG—C6179.6 (3)
C8—C9—O2121.0 (4)C2—CG—C6120.8 (3)
C11—C10—O2123.0 (4)C4—CG—C6119.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.193.037 (5)167
N2—H2B···O30.861.992.851 (5)178
O3—H3···O1ii0.821.972.765 (5)164
C14—H14B···CGiii0.972.963.704 (5)135
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13ClN2O2·C2H6O
Mr346.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.7610 (8), 9.6281 (9), 10.7951 (11)
α, β, γ (°)76.878 (1), 83.028 (2), 77.632 (1)
V3)863.69 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.47 × 0.46 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.896, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
4606, 3003, 1428
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.230, 0.90
No. of reflections3003
No. of parameters219
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.193.037 (5)167.2
N2—H2B···O30.861.992.851 (5)177.9
O3—H3···O1ii0.821.972.765 (5)163.9
C14—H14B···CGiii0.972.963.704 (5)134.5
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z.
 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

References

First citationLokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarco, J. L., Martin, G., Martin, N., Martinez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133–7144.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358–o359.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds