metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ2-1,2-bis­­(4-pyrid­yl)ethene](μ3-1,3-phenyl­enedi­acetato)­cadmium]

aCollege of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, People's Republic of China
*Correspondence e-mail: dongliu@chnu.edu.cn

(Received 19 October 2011; accepted 19 October 2011; online 29 October 2011)

In the title coordination polymer, [Cd(C10H8O4)(C12H10N2)]n, two centrosymmetrically related CdII atoms are bridged by two 1,3-phenyl­enediacetate ligands forming a chain along the [100] direction. The distorted penta­gonal–bipyramidal coordination about each metal atom is completed by the N atoms of bridging 1,2-bis­(4-pyrid­yl)ethene ligands, which link these one-dimensional chains into a two-dimensional net extending along the (101) plane.

Related literature

For two-dimensional nets constructed by CdII, dipyridyl ligands and dicarboxyl­ate ligands, see: Tao et al. (2003[Tao, J., Chen, X.-M., Huang, R.-B. & Zheng, L.-S. (2003). J. Solid State Chem. 170, 130-134.]); Tian et al. (2006[Tian, G., Zhu, G., Fang, Q., Guo, X., Xue, M., Sun, J. & Qiu, S. (2006). J. Mol. Struct. 787, 45-49.]); Wang et al. (2009[Wang, Y.-T., Xu, Y., Fan, Y.-T. & Hou, H.-W. (2009). J. Solid State Chem. 182, 2707-2715.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H8O4)(C12H10N2)]

  • Mr = 486.79

  • Triclinic, [P \overline 1]

  • a = 9.4626 (19) Å

  • b = 10.113 (2) Å

  • c = 11.351 (2) Å

  • α = 98.95 (3)°

  • β = 92.19 (3)°

  • γ = 116.88 (3)°

  • V = 949.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 223 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Rigaku MercuryCCD area-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.649, Tmax = 0.757

  • 8582 measured reflections

  • 4256 independent reflections

  • 3630 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.09

  • 4256 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.85 e Å−3

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, particular attention has been devoted to coordination polymers because of their undisputed beauty and potential applications as materials for adsorption, separation, and catalysis (Tao et al., 2003; Tian et al., 2006; Wang et al., 2009). Conformationally flexible dicarboxylate ligands, showing varied geometries, are often featured in these new classes of compounds (Wang et al., 2009).

In this work, the reaction between Cd(NO3)2, 1,3-phenylenediacetic acid (1,3-H2pda) and 1,2-bis(4-pyridyl)ethene (bpe) afforded the title coordination polymer, [Cd(C12H10N2)(C10H8O4)]n (I). In (I), each CdII atom is located in a pentagonal bipyramidally environment, coordinated by five O atoms from three different 1,3-pda ligands at the basal positions and two N atom from two different bpe ligands at the apical position (Fig. 1). Two centrosymmetrically related CdII atoms are linked by two 1,3-pda ligands to form a one-dimensional chain along the a axis (Fig. 2). Such a chain is connected to its adjacent ones via pairs of bpe ligands to form a two-dimensional net extending along the ac plane (Fig. 3).

Related literature top

For the two-dimensional nets constructed by CdII, dipyridyl ligands and dicarboxylate ligands, see: Tao et al. (2003); Tian et al. (2006); Wang et al. (2009).

Experimental top

To a 25 ml Teflon-lined stainless steel autoclave was loaded Cd(NO3)2.4H2O (154 mg, 0.5 mmol), 1,3-phenylenediacetic acid (97 mg, 0.5 mmol), 1,2-bis(4-pyridyl)ethene (91 mg, 0.5 mmol), NaOH (40 mg, 1 mmol) and H2O (15 ml). The autoclave was sealed and heated in an oven to 433 K for three days, and then cooled to ambient temperature at the rate of 5 K/h to form yellow crystals. Yield: 180 mg (74% yield based on Cd). Anal. calcd. for C22H18CdN2O4: C, 54.28; H, 3.73; N, 5.75. Found: C, 53.96; H, 3.77; N, 6.03.

Refinement top

The C-bound H atoms were positioned geometrically, with C–H = 0.97 Å (methylene) or 0.94 Å (phenyl, pyridyl and vinyl), and refined as riding, with Uiso(H) = 1.5Ueq(C) for methylene groups or 1.2Ueq(C) otherwise.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Coordination environment of CdII atom in the compound with nonhydrogen atoms represented by thermal ellipsoids draw at 30% probability level. [Symmetry codes: i: x, y + 1, z + 1; ii: x – 1, y, z; iii: – x + 1, – y + 1, – z.]
[Figure 2] Fig. 2. View of the one-dimensional chain in the title compound.
[Figure 3] Fig. 3. View of the two-dimensional net of the title compound.
Poly[[µ2-1,2-bis(4-pyridyl)ethene](µ3-1,3-phenylenediacetato)cadmium] top
Crystal data top
[Cd(C10H8O4)(C12H10N2)]Z = 2
Mr = 486.79F(000) = 488
Triclinic, P1Dx = 1.702 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4626 (19) ÅCell parameters from 4814 reflections
b = 10.113 (2) Åθ = 3.2–27.5°
c = 11.351 (2) ŵ = 1.18 mm1
α = 98.95 (3)°T = 223 K
β = 92.19 (3)°Block, yellow
γ = 116.88 (3)°0.40 × 0.30 × 0.25 mm
V = 949.8 (3) Å3
Data collection top
Rigaku MercuryCCD area-detector
diffractometer
4256 independent reflections
Radiation source: fine-focus sealed tube3630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1211
Tmin = 0.649, Tmax = 0.757k = 1212
8582 measured reflectionsl = 1114
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0352P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4256 reflectionsΔρmax = 1.16 e Å3
263 parametersΔρmin = 0.85 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.098 (3)
Crystal data top
[Cd(C10H8O4)(C12H10N2)]γ = 116.88 (3)°
Mr = 486.79V = 949.8 (3) Å3
Triclinic, P1Z = 2
a = 9.4626 (19) ÅMo Kα radiation
b = 10.113 (2) ŵ = 1.18 mm1
c = 11.351 (2) ÅT = 223 K
α = 98.95 (3)°0.40 × 0.30 × 0.25 mm
β = 92.19 (3)°
Data collection top
Rigaku MercuryCCD area-detector
diffractometer
4256 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3630 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.757Rint = 0.029
8582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.09Δρmax = 1.16 e Å3
4256 reflectionsΔρmin = 0.85 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.16456 (3)0.49799 (2)0.10431 (2)0.02493 (12)
N10.1884 (3)0.3281 (3)0.0471 (3)0.0287 (6)
N20.1751 (3)0.3077 (3)0.7491 (2)0.0266 (6)
O10.1024 (3)0.3142 (3)0.2322 (2)0.0353 (6)
O20.3550 (3)0.4760 (2)0.2348 (2)0.0350 (6)
O30.8868 (3)0.3906 (3)0.0535 (2)0.0362 (6)
O40.6363 (3)0.2894 (3)0.0233 (2)0.0336 (6)
C10.2978 (4)0.3687 (4)0.1239 (3)0.0338 (8)
H10.37880.46930.10970.041*
C20.2974 (4)0.2702 (4)0.2224 (3)0.0325 (8)
H20.37590.30390.27450.039*
C30.1791 (4)0.1192 (3)0.2445 (3)0.0288 (7)
C40.0700 (4)0.0771 (4)0.1623 (3)0.0355 (8)
H40.00900.02390.17140.043*
C50.0775 (5)0.1841 (4)0.0670 (3)0.0365 (9)
H50.00060.15360.01350.044*
C60.1591 (4)0.0064 (4)0.3510 (3)0.0337 (8)
H60.07760.09240.35430.040*
C70.2438 (4)0.0293 (4)0.4427 (3)0.0320 (8)
H70.32820.12670.43910.038*
C80.2160 (4)0.0861 (3)0.5501 (3)0.0291 (7)
C90.3390 (4)0.0707 (4)0.6182 (3)0.0315 (8)
H90.43850.01620.59890.038*
C100.3148 (4)0.1832 (4)0.7145 (3)0.0315 (8)
H100.40080.17180.75800.038*
C110.0541 (4)0.3206 (4)0.6863 (3)0.0299 (7)
H110.04580.40610.71030.036*
C120.0698 (4)0.2139 (4)0.5878 (3)0.0331 (8)
H120.01830.22760.54620.040*
C130.4592 (4)0.2971 (3)0.3492 (3)0.0284 (7)
C140.5692 (4)0.3628 (4)0.4528 (3)0.0323 (8)
H140.54050.40040.52390.039*
C150.7199 (4)0.3733 (4)0.4519 (3)0.0358 (8)
H150.79390.41990.52180.043*
C160.7619 (4)0.3156 (4)0.3491 (3)0.0347 (8)
H160.86490.32390.34900.042*
C170.6528 (4)0.2449 (4)0.2447 (3)0.0301 (8)
C180.5032 (4)0.2396 (3)0.2462 (3)0.0305 (8)
H180.43040.19590.17570.037*
C190.2923 (4)0.2811 (4)0.3494 (3)0.0320 (8)
H19A0.27980.31770.43160.038*
H19B0.21600.17330.32790.038*
C200.2475 (4)0.3636 (3)0.2656 (3)0.0243 (7)
C210.6985 (4)0.1814 (4)0.1321 (3)0.0334 (8)
H21A0.60910.08420.09340.040*
H21B0.78990.16450.15250.040*
C220.7419 (4)0.2925 (3)0.0462 (3)0.0265 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03223 (17)0.02483 (16)0.01910 (16)0.01568 (11)0.00324 (10)0.00013 (9)
N10.0356 (15)0.0267 (14)0.0227 (16)0.0157 (12)0.0049 (13)0.0021 (11)
N20.0348 (15)0.0267 (13)0.0190 (15)0.0167 (12)0.0024 (12)0.0013 (11)
O10.0246 (12)0.0387 (13)0.0438 (17)0.0143 (10)0.0011 (11)0.0135 (11)
O20.0269 (12)0.0334 (12)0.0422 (16)0.0094 (10)0.0020 (11)0.0162 (11)
O30.0282 (13)0.0411 (14)0.0372 (16)0.0120 (11)0.0061 (11)0.0143 (12)
O40.0324 (13)0.0397 (13)0.0278 (15)0.0161 (11)0.0016 (11)0.0067 (11)
C10.0317 (18)0.0310 (17)0.033 (2)0.0129 (15)0.0063 (16)0.0055 (15)
C20.0274 (17)0.0378 (18)0.028 (2)0.0147 (15)0.0067 (15)0.0035 (15)
C30.0362 (18)0.0281 (16)0.026 (2)0.0199 (15)0.0030 (15)0.0008 (14)
C40.047 (2)0.0230 (16)0.030 (2)0.0120 (15)0.0084 (17)0.0004 (14)
C50.049 (2)0.0311 (18)0.027 (2)0.0164 (16)0.0148 (17)0.0029 (15)
C60.039 (2)0.0275 (17)0.032 (2)0.0159 (15)0.0034 (16)0.0022 (14)
C70.041 (2)0.0253 (16)0.029 (2)0.0159 (15)0.0035 (16)0.0020 (14)
C80.043 (2)0.0264 (16)0.0231 (19)0.0208 (15)0.0025 (15)0.0031 (14)
C90.042 (2)0.0247 (16)0.024 (2)0.0134 (15)0.0034 (16)0.0008 (14)
C100.0374 (19)0.0318 (17)0.0236 (19)0.0159 (15)0.0063 (15)0.0007 (14)
C110.0329 (18)0.0315 (17)0.0247 (19)0.0164 (15)0.0010 (15)0.0008 (14)
C120.0355 (19)0.0428 (19)0.027 (2)0.0245 (16)0.0076 (16)0.0031 (15)
C130.0299 (17)0.0306 (17)0.028 (2)0.0145 (14)0.0065 (15)0.0121 (15)
C140.0363 (19)0.0346 (18)0.028 (2)0.0177 (15)0.0081 (16)0.0082 (15)
C150.038 (2)0.0413 (19)0.030 (2)0.0211 (17)0.0032 (16)0.0042 (16)
C160.0314 (18)0.0425 (19)0.039 (2)0.0221 (16)0.0070 (17)0.0140 (17)
C170.0367 (19)0.0299 (17)0.030 (2)0.0175 (15)0.0113 (16)0.0138 (15)
C180.0331 (18)0.0315 (17)0.026 (2)0.0135 (15)0.0033 (15)0.0097 (15)
C190.0284 (17)0.0367 (18)0.031 (2)0.0137 (15)0.0060 (15)0.0119 (15)
C200.0279 (17)0.0261 (15)0.0211 (18)0.0148 (14)0.0042 (14)0.0035 (13)
C210.041 (2)0.0321 (17)0.031 (2)0.0188 (16)0.0109 (17)0.0094 (15)
C220.0338 (18)0.0285 (16)0.0193 (18)0.0177 (15)0.0052 (15)0.0010 (13)
Geometric parameters (Å, º) top
Cd1—N12.327 (3)C6—H60.9400
Cd1—N2i2.332 (3)C7—C81.474 (5)
Cd1—O3ii2.351 (2)C7—H70.9400
Cd1—O22.398 (2)C8—C91.386 (5)
Cd1—O3iii2.402 (2)C8—C121.390 (5)
Cd1—O12.413 (2)C9—C101.378 (5)
Cd1—O4iii2.470 (2)C9—H90.9400
Cd1—C202.729 (3)C10—H100.9400
Cd1—C22iii2.781 (3)C11—C121.380 (5)
N1—C51.331 (4)C11—H110.9400
N1—C11.340 (4)C12—H120.9400
N2—C101.337 (4)C13—C181.387 (5)
N2—C111.338 (4)C13—C141.395 (5)
N2—Cd1iv2.331 (3)C13—C191.513 (5)
O1—C201.249 (4)C14—C151.382 (5)
O2—C201.247 (4)C14—H140.9400
O3—C221.267 (4)C15—C161.376 (5)
O3—Cd1v2.351 (2)C15—H150.9400
O3—Cd1iii2.402 (2)C16—C171.399 (5)
O4—C221.235 (4)C16—H160.9400
O4—Cd1iii2.470 (2)C17—C181.392 (5)
C1—C21.376 (5)C17—C211.507 (5)
C1—H10.9400C18—H180.9400
C2—C31.400 (4)C19—C201.522 (5)
C2—H20.9400C19—H19A0.9800
C3—C41.385 (5)C19—H19B0.9800
C3—C61.469 (5)C21—C221.529 (5)
C4—C51.380 (5)C21—H21A0.9800
C4—H40.9400C21—H21B0.9800
C5—H50.9400C22—Cd1iii2.781 (3)
C6—C71.323 (5)
N1—Cd1—N2i172.12 (9)C3—C4—H4120.1
N1—Cd1—O3ii92.92 (10)N1—C5—C4123.3 (3)
N2i—Cd1—O3ii93.60 (10)N1—C5—H5118.4
N1—Cd1—O288.91 (10)C4—C5—H5118.4
N2i—Cd1—O288.96 (10)C7—C6—C3126.8 (3)
O3ii—Cd1—O2139.86 (8)C7—C6—H6116.6
N1—Cd1—O3iii86.43 (9)C3—C6—H6116.6
N2i—Cd1—O3iii91.45 (9)C6—C7—C8125.0 (3)
O3ii—Cd1—O3iii71.46 (9)C6—C7—H7117.5
O2—Cd1—O3iii148.59 (8)C8—C7—H7117.5
N1—Cd1—O188.59 (9)C9—C8—C12116.8 (3)
N2i—Cd1—O196.33 (9)C9—C8—C7120.0 (3)
O3ii—Cd1—O185.54 (8)C12—C8—C7123.1 (3)
O2—Cd1—O154.39 (8)C10—C9—C8119.7 (3)
O3iii—Cd1—O1156.16 (8)C10—C9—H9120.1
N1—Cd1—O4iii89.83 (9)C8—C9—H9120.1
N2i—Cd1—O4iii82.82 (9)N2—C10—C9123.3 (3)
O3ii—Cd1—O4iii124.49 (8)N2—C10—H10118.4
O2—Cd1—O4iii95.59 (8)C9—C10—H10118.4
O3iii—Cd1—O4iii53.40 (8)N2—C11—C12122.8 (3)
O1—Cd1—O4iii149.96 (8)N2—C11—H11118.6
N1—Cd1—C2087.53 (10)C12—C11—H11118.6
N2i—Cd1—C2094.02 (10)C11—C12—C8120.0 (3)
O3ii—Cd1—C20112.79 (9)C11—C12—H12120.0
O2—Cd1—C2027.18 (8)C8—C12—H12120.0
O3iii—Cd1—C20172.80 (8)C18—C13—C14118.6 (3)
O1—Cd1—C2027.25 (8)C18—C13—C19120.1 (3)
O4iii—Cd1—C20122.72 (9)C14—C13—C19121.3 (3)
N1—Cd1—C22iii88.67 (9)C15—C14—C13120.6 (3)
N2i—Cd1—C22iii86.02 (9)C15—C14—H14119.7
O3ii—Cd1—C22iii98.26 (10)C13—C14—H14119.7
O2—Cd1—C22iii121.88 (9)C16—C15—C14120.2 (4)
O3iii—Cd1—C22iii27.06 (9)C16—C15—H15119.9
O1—Cd1—C22iii175.42 (8)C14—C15—H15119.9
O4iii—Cd1—C22iii26.36 (9)C15—C16—C17120.6 (3)
C20—Cd1—C22iii148.87 (10)C15—C16—H16119.7
N1—Cd1—Cd1vi89.56 (8)C17—C16—H16119.7
N2i—Cd1—Cd1vi93.09 (8)C18—C17—C16118.3 (3)
O3ii—Cd1—Cd1vi36.17 (6)C18—C17—C21120.9 (3)
O2—Cd1—Cd1vi175.62 (5)C16—C17—C21120.7 (3)
O3iii—Cd1—Cd1vi35.29 (6)C13—C18—C17121.6 (3)
O1—Cd1—Cd1vi121.47 (6)C13—C18—H18119.2
O4iii—Cd1—Cd1vi88.51 (6)C17—C18—H18119.2
C20—Cd1—Cd1vi148.61 (7)C13—C19—C20116.1 (3)
C22iii—Cd1—Cd1vi62.17 (8)C13—C19—H19A108.3
C5—N1—C1117.3 (3)C20—C19—H19A108.3
C5—N1—Cd1118.4 (2)C13—C19—H19B108.3
C1—N1—Cd1124.0 (2)C20—C19—H19B108.3
C10—N2—C11117.2 (3)H19A—C19—H19B107.4
C10—N2—Cd1iv118.7 (2)O2—C20—O1123.5 (3)
C11—N2—Cd1iv123.5 (2)O2—C20—C19119.4 (3)
C20—O1—Cd190.57 (19)O1—C20—C19117.1 (3)
C20—O2—Cd191.3 (2)O2—C20—Cd161.47 (17)
C22—O3—Cd1v156.6 (2)O1—C20—Cd162.18 (17)
C22—O3—Cd1iii93.4 (2)C19—C20—Cd1176.6 (2)
Cd1v—O3—Cd1iii108.54 (9)C17—C21—C22109.4 (3)
C22—O4—Cd1iii91.02 (19)C17—C21—H21A109.8
N1—C1—C2123.2 (3)C22—C21—H21A109.8
N1—C1—H1118.4C17—C21—H21B109.8
C2—C1—H1118.4C22—C21—H21B109.8
C1—C2—C3119.4 (3)H21A—C21—H21B108.2
C1—C2—H2120.3O4—C22—O3122.1 (3)
C3—C2—H2120.3O4—C22—C21120.0 (3)
C4—C3—C2116.9 (3)O3—C22—C21117.7 (3)
C4—C3—C6118.5 (3)O4—C22—Cd1iii62.63 (17)
C2—C3—C6124.5 (3)O3—C22—Cd1iii59.56 (17)
C5—C4—C3119.8 (3)C21—C22—Cd1iii177.3 (3)
C5—C4—H4120.1
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x, y1, z1; (v) x+1, y, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C10H8O4)(C12H10N2)]
Mr486.79
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)9.4626 (19), 10.113 (2), 11.351 (2)
α, β, γ (°)98.95 (3), 92.19 (3), 116.88 (3)
V3)949.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerRigaku MercuryCCD area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.649, 0.757
No. of measured, independent and
observed [I > 2σ(I)] reflections
8582, 4256, 3630
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.09
No. of reflections4256
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.85

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University (grant No. 600581).

References

First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Chen, X.-M., Huang, R.-B. & Zheng, L.-S. (2003). J. Solid State Chem. 170, 130–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, G., Zhu, G., Fang, Q., Guo, X., Xue, M., Sun, J. & Qiu, S. (2006). J. Mol. Struct. 787, 45–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y.-T., Xu, Y., Fan, Y.-T. & Hou, H.-W. (2009). J. Solid State Chem. 182, 2707–2715.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds