metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris{2-[(furan-2-meth­yl)imino­meth­yl]-4-methyl­phenolato}cobalt(III)

aCollege of Health Science, Wuhan Institute of Physical Education, Wuhan 430079, People's Republic of China
*Correspondence e-mail: lichunyan2009@yahoo.com.cn

(Received 13 August 2011; accepted 25 October 2011; online 29 October 2011)

In title compound, [Co(C13H12NO2)3], the CoIII ion is six-coordinated by three bidentate Schiff base ligands in a distorted octa­hedral environment. Adjacent complex mol­ecules are linked through C—H⋯O hydrogen bonds.

Related literature

Schiff base ligands may act as a bidentate N,O- (Castillo et al., 2003[Castillo, I., Fernandez-Gonzalez, J. M. & Garate-Morales, J. L. (2003). J. Mol. Struct. 657, 25-35.]) and tridentate N,O,O-donor ligands (Erxleben & Schumacher, 2001[Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039-3046.]) in coordination chemistry. For the anti­tumour activity of Schiff base–metal complexes, see: Liu et al. (1992[Liu, M. C., Lin, T. S. & Sartorelli, A. C. (1992). J. Med. Chem. 35, 3672-3677.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]) and for their anti-microbial activity, see: Panneerselvam et al. (2005[Panneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Sridhar, S. K. (2005). Eur. J. Med. Chem. 40, 225-229.]). For background to vitamin B12, see: Randaccio et al. (2010[Randaccio, L., Geremia, S., Demitri, N. & Wuerges, J. (2010). Molecules, 15, 3228-3259.]). For related structures, see: Olejnik & Lis (1994[Olejnik, Z. & Lis, T. (1994). Bull. Pol. Acad. Sci. Chem. 42, 41-47.]); Ray et al. (2008[Ray, A., Banerjee, S., Rosair, G. M., Gramlich, V. & Mitra, S. (2008). Struct. Chem. 19, 459-465.]); Sari et al. (1997[Sari, M., Ercan, F., Yagbasan, R., Atakol, O. & Kenar, A. (1997). Z. Kristallogr. New Cryst. Struct. 212, 185-186.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H12NO2)3]

  • Mr = 701.64

  • Triclinic, [P \overline 1]

  • a = 9.7150 (8) Å

  • b = 11.3607 (9) Å

  • c = 16.8591 (14) Å

  • α = 102.605 (1)°

  • β = 102.984 (1)°

  • γ = 104.752 (1)°

  • V = 1676.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 291 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.858, Tmax = 0.895

  • 17629 measured reflections

  • 6547 independent reflections

  • 5722 reflections with I > \2(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.01

  • 6547 reflections

  • 445 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O5i 0.93 2.54 3.386 (3) 151
C29—H29⋯O4ii 0.93 2.59 3.450 (3) 153
C34—H34⋯O6iii 0.93 2.52 3.363 (3) 151
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff base ligands may act as a bidentate N,O- (Castillo et al., 2003) and a tridentate N,O,O-donor ligand (Erxleben et al., 2001) in the coordination chemistry. In general, the Schiff base metal complexes possess antitumour activities (Ren et al., 2002; Liu et al., 1992) and antimicrobial (Panneerselvam et al., 2005). In addition, cobalt is an important life-required element. For example, vitamin B12, also called cobalamin, which is a water soluble vitamin with a key role in the normal functioning of the brain and nervous system, and for the formation of blood (Randaccio et al., 2010). By taking the biological importance of element cobalt into account, we designed the title complex with the bidentate N,O-donor Schiff base ligands (Scheme I).

The title complex reported here is the mononuclear cobalt(III) complex of the Schiff-base ligand, derived from the condensation of 5-methylsalicylaldehyde and furfuryl amine (Fig. 1). The cobalt(III) atom has a distorted octahedral coordination sphere. Cobalt(III) atom is six-coordinated by three imino N atoms and three phenolic O atoms from three bidentate Schiff-base ligands. Analogous octahedral Co(III) species were previously reported in the literatures (Ray et al., 2008; Sari et al., 1997; Olejnik et al., 1994). All bond lengths are within normal ranges (Allen et al., 1987). It is interesting to point out that the planes of the six-membered chelate rings coordinated to the same Co(III) ion were twisted by 76.41 (3)°, 70.99 (4)°, 84.60 (3)° with respect to each other.

In the crystal structure, the molecules are linked via intermolecular C—H···O hydrogen bonds (Fig.2).

Related literature top

Schiff base ligands may act as a bidentate N,O- (Castillo et al., 2003) and tridentate N,O,O-donor ligands (Erxleben et al., 2001) in coordination chemistry. For the antitumour activity of Schiff base–metal complexes, see: Liu et al. (1992); Ren et al. (2002) and for their anti-microbial activity, see: Panneerselvam et al. (2005). For background to vitamin B12, see: Randaccio et al. (2010). For related structures, see: Olejnik et al. (1994); Ray et al. (2008); Sari et al. (1997). For standard bond lengths, see: Allen et al. (1987).

Experimental top

5-methylsalicylaldehyde (272 mg, 2 mmol) and furfurylamine (194 mg, 2 mmol) were dissolved in an aqueous methanol solution (25 mL).The mixture was stirred at room temperature for 1 h to give a clear yellow solution, which was added to a solutionof Co(NO3)2.6H2O (291 mg, 1 mmol) in methanol (10 mL). The mixture was stirred for 30 min at room temperature to give a brown solution and then filtered. The red single crystals suitable for X-ray analysis were obtained by slowly evaporating the above filtrate at room temperature. The crystals were isolated and dried in a vacuum desiccator containing anhydrous CaCl2, in about 66% yield. Anal. Calcd for C39H36CoN3O6: C, 66.76; H, 5.17; N, 5.99. Found: C, 66.52; H, 5.10; N, 5.67%. IR (KBr, cm-1): 3445, 2918, 1625, 1535, 1467, 1428, 1385, 1318, 1254, 1217, 1143, 1078, 1017, 905, 819, 741, 598, 455.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl groups).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I), with the atom numbering scheme of the unique atoms (30% probability ellipsoids).
[Figure 2] Fig. 2. Partial packing view showing the chain formed through C–H···O hydrogen bonds.
Tris{2-[(furan-2-methyl)iminomethyl]-4-methylphenolato}cobalt(III) top
Crystal data top
[Co(C13H12NO2)3]Z = 2
Mr = 701.64F(000) = 732
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7150 (8) ÅCell parameters from 8681 reflections
b = 11.3607 (9) Åθ = 2.3–28.2°
c = 16.8591 (14) ŵ = 0.57 mm1
α = 102.605 (1)°T = 291 K
β = 102.984 (1)°Block, red
γ = 104.752 (1)°0.28 × 0.22 × 0.20 mm
V = 1676.8 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6547 independent reflections
Radiation source: fine-focus sealed tube5722 reflections with I > \2(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.858, Tmax = 0.895k = 1414
17629 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.2448P]
where P = (Fo2 + 2Fc2)/3
6547 reflections(Δ/σ)max < 0.001
445 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Co(C13H12NO2)3]γ = 104.752 (1)°
Mr = 701.64V = 1676.8 (2) Å3
Triclinic, P1Z = 2
a = 9.7150 (8) ÅMo Kα radiation
b = 11.3607 (9) ŵ = 0.57 mm1
c = 16.8591 (14) ÅT = 291 K
α = 102.605 (1)°0.28 × 0.22 × 0.20 mm
β = 102.984 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6547 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5722 reflections with I > \2(I)
Tmin = 0.858, Tmax = 0.895Rint = 0.043
17629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
6547 reflectionsΔρmin = 0.23 e Å3
445 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4525 (2)0.84481 (19)0.81135 (13)0.0386 (4)
C20.5118 (2)0.87505 (18)0.74636 (13)0.0353 (4)
C30.5290 (3)0.9974 (2)0.73886 (15)0.0451 (5)
H30.56611.01970.69610.054*
C40.4928 (3)1.0862 (2)0.79267 (16)0.0514 (6)
H40.50771.16710.78600.062*
C50.4338 (3)1.0576 (2)0.85741 (15)0.0497 (5)
C60.4135 (3)0.9373 (2)0.86463 (15)0.0486 (5)
H60.37240.91540.90620.058*
C70.3922 (4)1.1564 (3)0.91538 (19)0.0727 (8)
H7A0.31051.11460.93310.109*
H7B0.36341.21310.88520.109*
H7C0.47631.20410.96450.109*
C80.4168 (2)0.7179 (2)0.81855 (13)0.0396 (5)
H80.35280.69700.85050.047*
C90.4039 (3)0.4991 (2)0.78844 (14)0.0443 (5)
H9A0.34320.44660.73150.053*
H9B0.48660.46730.80430.053*
C100.3131 (2)0.4805 (2)0.84705 (14)0.0421 (5)
C110.1680 (3)0.4320 (3)0.83652 (17)0.0624 (7)
H110.09210.40470.78530.075*
C120.1498 (3)0.4296 (3)0.91689 (19)0.0685 (8)
H120.06080.40030.92910.082*
C130.2842 (3)0.4771 (3)0.97078 (18)0.0705 (8)
H130.30540.48711.02890.085*
C140.5834 (2)0.37043 (18)0.62530 (13)0.0352 (4)
C150.6782 (2)0.42767 (18)0.70947 (13)0.0352 (4)
C160.7650 (2)0.3586 (2)0.74421 (15)0.0437 (5)
H160.82110.38980.80130.052*
C170.7683 (2)0.2458 (2)0.69516 (16)0.0472 (5)
H170.82870.20370.71970.057*
C180.6839 (2)0.1928 (2)0.60989 (16)0.0468 (5)
C190.5893 (2)0.25399 (19)0.57714 (15)0.0424 (5)
H190.52720.21760.52150.051*
C200.7008 (3)0.0749 (2)0.5557 (2)0.0679 (7)
H20A0.64450.05800.49750.102*
H20B0.66450.00360.57570.102*
H20C0.80410.08860.55970.102*
C210.4791 (2)0.42576 (18)0.58591 (12)0.0344 (4)
H210.41580.37840.53180.041*
C220.3441 (2)0.56849 (19)0.56579 (13)0.0364 (4)
H22A0.38320.65620.56620.044*
H22B0.31410.51540.50740.044*
C230.2122 (2)0.55384 (19)0.59660 (12)0.0369 (4)
C240.1454 (3)0.6340 (2)0.62894 (16)0.0539 (6)
H240.17830.72220.64160.065*
C250.0136 (3)0.5577 (3)0.64020 (18)0.0636 (7)
H250.05560.58670.66190.076*
C260.0092 (3)0.4395 (3)0.61410 (18)0.0617 (7)
H260.06600.36990.61400.074*
C270.8930 (2)0.89061 (19)0.73095 (13)0.0390 (4)
C280.8274 (2)0.78873 (18)0.65436 (13)0.0346 (4)
C290.8810 (2)0.8046 (2)0.58505 (14)0.0414 (5)
H290.84370.73870.53440.050*
C300.9870 (2)0.9150 (2)0.59038 (14)0.0449 (5)
H301.01880.92150.54300.054*
C311.0489 (2)1.0181 (2)0.66481 (15)0.0464 (5)
C321.0010 (2)1.0024 (2)0.73354 (14)0.0467 (5)
H321.04161.06840.78420.056*
C331.1623 (3)1.1385 (2)0.66737 (19)0.0683 (7)
H33A1.11391.18370.63450.102*
H33B1.23741.11750.64400.102*
H33C1.20781.19110.72520.102*
C340.8682 (2)0.8740 (2)0.80870 (13)0.0419 (5)
H340.93230.93470.85870.050*
C350.7820 (3)0.7725 (2)0.90397 (13)0.0479 (5)
H35A0.71070.69340.90140.057*
H35B0.75860.84190.93700.057*
C360.9345 (3)0.7756 (2)0.94819 (13)0.0458 (5)
C371.0248 (3)0.7123 (3)0.92707 (18)0.0725 (8)
H371.00480.64950.87640.087*
C381.1573 (3)0.7585 (3)0.9962 (2)0.0715 (8)
H381.24100.73200.99970.086*
C391.1391 (3)0.8452 (3)1.0536 (2)0.0832 (10)
H391.21000.89201.10560.100*
Co10.60770 (3)0.65937 (2)0.719934 (15)0.03035 (10)
N10.46557 (18)0.63065 (15)0.78462 (10)0.0339 (4)
N20.46406 (16)0.53381 (15)0.61766 (10)0.0308 (3)
N30.76538 (18)0.78309 (16)0.81676 (10)0.0368 (4)
O10.54573 (15)0.79318 (12)0.69174 (8)0.0353 (3)
O20.38919 (19)0.51014 (19)0.93061 (10)0.0629 (5)
O30.68839 (15)0.53894 (13)0.75724 (9)0.0392 (3)
O40.13047 (17)0.43143 (15)0.58673 (10)0.0505 (4)
O50.73163 (14)0.68008 (12)0.64728 (9)0.0366 (3)
O61.0013 (2)0.85831 (19)1.02703 (12)0.0764 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (11)0.0405 (11)0.0402 (11)0.0153 (9)0.0176 (9)0.0125 (9)
C20.0309 (10)0.0351 (10)0.0389 (10)0.0106 (8)0.0097 (8)0.0095 (8)
C30.0508 (13)0.0388 (11)0.0531 (13)0.0158 (10)0.0233 (11)0.0182 (10)
C40.0569 (14)0.0367 (11)0.0645 (15)0.0193 (10)0.0203 (12)0.0152 (11)
C50.0506 (13)0.0475 (13)0.0524 (13)0.0227 (11)0.0175 (11)0.0066 (10)
C60.0536 (13)0.0542 (13)0.0469 (13)0.0233 (11)0.0259 (11)0.0137 (10)
C70.091 (2)0.0616 (17)0.0735 (19)0.0401 (16)0.0331 (16)0.0066 (14)
C80.0405 (11)0.0462 (12)0.0378 (11)0.0142 (9)0.0191 (9)0.0155 (9)
C90.0501 (13)0.0374 (11)0.0477 (12)0.0097 (9)0.0199 (10)0.0166 (9)
C100.0450 (12)0.0420 (11)0.0426 (11)0.0109 (9)0.0143 (9)0.0208 (9)
C110.0426 (13)0.0807 (18)0.0606 (16)0.0075 (13)0.0137 (12)0.0301 (14)
C120.0568 (16)0.089 (2)0.083 (2)0.0262 (15)0.0389 (15)0.0490 (17)
C130.079 (2)0.100 (2)0.0548 (16)0.0344 (18)0.0339 (15)0.0466 (16)
C140.0303 (10)0.0326 (10)0.0433 (11)0.0076 (8)0.0144 (8)0.0113 (8)
C150.0279 (9)0.0347 (10)0.0461 (11)0.0094 (8)0.0150 (8)0.0146 (9)
C160.0354 (11)0.0427 (12)0.0554 (13)0.0121 (9)0.0121 (9)0.0208 (10)
C170.0352 (11)0.0394 (11)0.0759 (16)0.0161 (9)0.0201 (11)0.0256 (11)
C180.0409 (12)0.0324 (11)0.0723 (16)0.0111 (9)0.0271 (11)0.0154 (10)
C190.0385 (11)0.0344 (10)0.0516 (13)0.0072 (9)0.0171 (10)0.0084 (9)
C200.0647 (17)0.0470 (14)0.095 (2)0.0260 (13)0.0314 (16)0.0095 (14)
C210.0289 (9)0.0348 (10)0.0344 (10)0.0044 (8)0.0101 (8)0.0063 (8)
C220.0311 (10)0.0417 (11)0.0372 (10)0.0108 (8)0.0086 (8)0.0152 (9)
C230.0331 (10)0.0424 (11)0.0348 (10)0.0135 (9)0.0065 (8)0.0128 (8)
C240.0497 (13)0.0567 (14)0.0613 (15)0.0284 (11)0.0151 (11)0.0170 (12)
C250.0459 (14)0.096 (2)0.0695 (17)0.0415 (15)0.0273 (12)0.0310 (15)
C260.0373 (13)0.0832 (19)0.0700 (17)0.0126 (12)0.0246 (12)0.0320 (15)
C270.0364 (11)0.0373 (11)0.0389 (11)0.0080 (9)0.0096 (9)0.0086 (9)
C280.0310 (10)0.0352 (10)0.0395 (11)0.0118 (8)0.0131 (8)0.0104 (8)
C290.0403 (11)0.0402 (11)0.0397 (11)0.0079 (9)0.0149 (9)0.0065 (9)
C300.0424 (12)0.0491 (12)0.0476 (12)0.0124 (10)0.0201 (10)0.0188 (10)
C310.0407 (12)0.0401 (11)0.0554 (13)0.0068 (9)0.0114 (10)0.0178 (10)
C320.0460 (12)0.0356 (11)0.0456 (12)0.0030 (9)0.0059 (10)0.0059 (9)
C330.0650 (17)0.0520 (15)0.0751 (18)0.0044 (13)0.0181 (14)0.0232 (13)
C340.0422 (11)0.0373 (11)0.0350 (10)0.0061 (9)0.0061 (9)0.0018 (8)
C350.0476 (13)0.0591 (14)0.0341 (11)0.0140 (11)0.0126 (9)0.0110 (10)
C360.0479 (12)0.0470 (12)0.0360 (11)0.0097 (10)0.0081 (9)0.0102 (9)
C370.0686 (18)0.084 (2)0.0575 (16)0.0322 (16)0.0133 (14)0.0033 (14)
C380.0537 (16)0.081 (2)0.082 (2)0.0272 (15)0.0139 (15)0.0284 (17)
C390.0629 (18)0.083 (2)0.072 (2)0.0241 (16)0.0195 (15)0.0003 (16)
Co10.02797 (15)0.03043 (15)0.03159 (16)0.00821 (11)0.00945 (11)0.00764 (11)
N10.0350 (9)0.0347 (8)0.0327 (8)0.0087 (7)0.0111 (7)0.0127 (7)
N20.0246 (8)0.0355 (8)0.0315 (8)0.0069 (6)0.0092 (6)0.0108 (7)
N30.0369 (9)0.0391 (9)0.0301 (8)0.0099 (7)0.0088 (7)0.0055 (7)
O10.0390 (7)0.0360 (7)0.0372 (7)0.0150 (6)0.0174 (6)0.0135 (6)
O20.0504 (10)0.0905 (13)0.0486 (10)0.0127 (9)0.0126 (8)0.0361 (9)
O30.0381 (8)0.0374 (7)0.0388 (8)0.0152 (6)0.0048 (6)0.0080 (6)
O40.0419 (8)0.0481 (9)0.0615 (10)0.0090 (7)0.0222 (7)0.0150 (7)
O50.0318 (7)0.0334 (7)0.0395 (7)0.0052 (6)0.0155 (6)0.0014 (6)
O60.0728 (12)0.0761 (13)0.0538 (11)0.0312 (10)0.0110 (9)0.0110 (9)
Geometric parameters (Å, º) top
C1—C21.413 (3)C22—N21.485 (2)
C1—C61.414 (3)C22—H22A0.9700
C1—C81.433 (3)C22—H22B0.9700
C2—O11.319 (2)C23—C241.338 (3)
C2—C31.395 (3)C23—O41.367 (2)
C3—C41.374 (3)C24—C251.429 (4)
C3—H30.9300C24—H240.9300
C4—C51.402 (3)C25—C261.305 (4)
C4—H40.9300C25—H250.9300
C5—C61.366 (3)C26—O41.375 (3)
C5—C71.520 (3)C26—H260.9300
C6—H60.9300C27—C321.412 (3)
C7—H7A0.9600C27—C281.420 (3)
C7—H7B0.9600C27—C341.428 (3)
C7—H7C0.9600C28—O51.305 (2)
C8—N11.284 (3)C28—C291.409 (3)
C8—H80.9300C29—C301.376 (3)
C9—C101.479 (3)C29—H290.9300
C9—N11.483 (2)C30—C311.403 (3)
C9—H9A0.9700C30—H300.9300
C9—H9B0.9700C31—C321.371 (3)
C10—C111.331 (3)C31—C331.507 (3)
C10—O21.357 (3)C32—H320.9300
C11—C121.410 (4)C33—H33A0.9600
C11—H110.9300C33—H33B0.9600
C12—C131.309 (4)C33—H33C0.9600
C12—H120.9300C34—N31.296 (3)
C13—O21.366 (3)C34—H340.9300
C13—H130.9300C35—N31.477 (3)
C14—C151.411 (3)C35—C361.489 (3)
C14—C191.415 (3)C35—H35A0.9700
C14—C211.438 (3)C35—H35B0.9700
C15—O31.309 (2)C36—C371.329 (4)
C15—C161.409 (3)C36—O61.352 (3)
C16—C171.377 (3)C37—C381.416 (4)
C16—H160.9300C37—H370.9300
C17—C181.394 (3)C38—C391.299 (4)
C17—H170.9300C38—H380.9300
C18—C191.377 (3)C39—O61.370 (4)
C18—C201.516 (3)C39—H390.9300
C19—H190.9300Co1—O11.8848 (13)
C20—H20A0.9600Co1—O31.8927 (13)
C20—H20B0.9600Co1—O51.9104 (13)
C20—H20C0.9600Co1—N31.9405 (16)
C21—N21.286 (2)Co1—N21.9459 (16)
C21—H210.9300Co1—N11.9505 (16)
C22—C231.472 (3)
C2—C1—C6119.64 (19)C25—C24—H24126.6
C2—C1—C8120.94 (18)C26—C25—C24106.6 (2)
C6—C1—C8119.10 (19)C26—C25—H25126.7
O1—C2—C3119.33 (18)C24—C25—H25126.7
O1—C2—C1123.68 (17)C25—C26—O4111.1 (2)
C3—C2—C1116.94 (18)C25—C26—H26124.4
C4—C3—C2122.1 (2)O4—C26—H26124.4
C4—C3—H3118.9C32—C27—C28119.94 (19)
C2—C3—H3118.9C32—C27—C34118.93 (19)
C3—C4—C5121.6 (2)C28—C27—C34120.43 (18)
C3—C4—H4119.2O5—C28—C29119.33 (17)
C5—C4—H4119.2O5—C28—C27124.00 (18)
C6—C5—C4117.1 (2)C29—C28—C27116.42 (18)
C6—C5—C7122.1 (2)C30—C29—C28121.7 (2)
C4—C5—C7120.8 (2)C30—C29—H29119.1
C5—C6—C1122.6 (2)C28—C29—H29119.1
C5—C6—H6118.7C29—C30—C31122.3 (2)
C1—C6—H6118.7C29—C30—H30118.8
C5—C7—H7A109.5C31—C30—H30118.8
C5—C7—H7B109.5C32—C31—C30116.5 (2)
H7A—C7—H7B109.5C32—C31—C33122.8 (2)
C5—C7—H7C109.5C30—C31—C33120.7 (2)
H7A—C7—H7C109.5C31—C32—C27123.0 (2)
H7B—C7—H7C109.5C31—C32—H32118.5
N1—C8—C1125.56 (18)C27—C32—H32118.5
N1—C8—H8117.2C31—C33—H33A109.5
C1—C8—H8117.2C31—C33—H33B109.5
C10—C9—N1117.47 (18)H33A—C33—H33B109.5
C10—C9—H9A107.9C31—C33—H33C109.5
N1—C9—H9A107.9H33A—C33—H33C109.5
C10—C9—H9B107.9H33B—C33—H33C109.5
N1—C9—H9B107.9N3—C34—C27126.66 (19)
H9A—C9—H9B107.2N3—C34—H34116.7
C11—C10—O2109.2 (2)C27—C34—H34116.7
C11—C10—C9134.3 (2)N3—C35—C36113.19 (18)
O2—C10—C9116.36 (19)N3—C35—H35A108.9
C10—C11—C12107.7 (2)C36—C35—H35A108.9
C10—C11—H11126.1N3—C35—H35B108.9
C12—C11—H11126.1C36—C35—H35B108.9
C13—C12—C11105.9 (2)H35A—C35—H35B107.8
C13—C12—H12127.1C37—C36—O6109.5 (2)
C11—C12—H12127.1C37—C36—C35133.6 (2)
C12—C13—O2111.3 (2)O6—C36—C35116.9 (2)
C12—C13—H13124.4C36—C37—C38107.1 (3)
O2—C13—H13124.4C36—C37—H37126.4
C15—C14—C19119.53 (19)C38—C37—H37126.4
C15—C14—C21122.40 (18)C39—C38—C37106.5 (3)
C19—C14—C21118.06 (19)C39—C38—H38126.7
O3—C15—C16118.42 (19)C37—C38—H38126.7
O3—C15—C14124.25 (18)C38—C39—O6110.8 (3)
C16—C15—C14117.32 (19)C38—C39—H39124.6
C17—C16—C15121.1 (2)O6—C39—H39124.6
C17—C16—H16119.4O1—Co1—O3173.72 (6)
C15—C16—H16119.4O1—Co1—O587.15 (6)
C16—C17—C18122.1 (2)O3—Co1—O592.04 (6)
C16—C17—H17119.0O1—Co1—N389.22 (7)
C18—C17—H17119.0O3—Co1—N384.56 (7)
C19—C18—C17117.3 (2)O5—Co1—N391.16 (6)
C19—C18—C20122.1 (2)O1—Co1—N292.27 (6)
C17—C18—C20120.6 (2)O3—Co1—N293.83 (6)
C18—C19—C14122.3 (2)O5—Co1—N283.72 (6)
C18—C19—H19118.9N3—Co1—N2174.59 (6)
C14—C19—H19118.9O1—Co1—N191.47 (6)
C18—C20—H20A109.5O3—Co1—N189.89 (6)
C18—C20—H20B109.5O5—Co1—N1174.71 (6)
H20A—C20—H20B109.5N3—Co1—N193.93 (7)
C18—C20—H20C109.5N2—Co1—N191.23 (6)
H20A—C20—H20C109.5C8—N1—C9119.34 (17)
H20B—C20—H20C109.5C8—N1—Co1122.97 (14)
N2—C21—C14126.83 (18)C9—N1—Co1117.52 (13)
N2—C21—H21116.6C21—N2—C22116.91 (16)
C14—C21—H21116.6C21—N2—Co1122.58 (13)
C23—C22—N2113.19 (16)C22—N2—Co1119.87 (13)
C23—C22—H22A108.9C34—N3—C35115.85 (18)
N2—C22—H22A108.9C34—N3—Co1122.56 (14)
C23—C22—H22B108.9C35—N3—Co1121.41 (14)
N2—C22—H22B108.9C2—O1—Co1122.20 (12)
H22A—C22—H22B107.8C10—O2—C13105.88 (19)
C24—C23—O4109.67 (19)C15—O3—Co1125.90 (12)
C24—C23—C22134.5 (2)C23—O4—C26105.85 (18)
O4—C23—C22115.65 (17)C28—O5—Co1123.52 (12)
C23—C24—C25106.7 (2)C36—O6—C39106.1 (2)
C23—C24—H24126.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O5i0.932.543.386 (3)151
C29—H29···O4ii0.932.593.450 (3)153
C34—H34···O6iii0.932.523.363 (3)151
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Co(C13H12NO2)3]
Mr701.64
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.7150 (8), 11.3607 (9), 16.8591 (14)
α, β, γ (°)102.605 (1), 102.984 (1), 104.752 (1)
V3)1676.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.858, 0.895
No. of measured, independent and
observed [I > \2(I)] reflections
17629, 6547, 5722
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.01
No. of reflections6547
No. of parameters445
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.23

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O5i0.932.543.386 (3)151
C29—H29···O4ii0.932.593.450 (3)153
C34—H34···O6iii0.932.523.363 (3)151
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+2.
 

Acknowledgements

This work was supported by the Education Office of Hubei Province (D20104104).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastillo, I., Fernandez-Gonzalez, J. M. & Garate-Morales, J. L. (2003). J. Mol. Struct. 657, 25–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationErxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039–3046.  CrossRef Google Scholar
First citationLiu, M. C., Lin, T. S. & Sartorelli, A. C. (1992). J. Med. Chem. 35, 3672–3677.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOlejnik, Z. & Lis, T. (1994). Bull. Pol. Acad. Sci. Chem. 42, 41–47.  CAS Google Scholar
First citationPanneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Sridhar, S. K. (2005). Eur. J. Med. Chem. 40, 225–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRandaccio, L., Geremia, S., Demitri, N. & Wuerges, J. (2010). Molecules, 15, 3228–3259.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRay, A., Banerjee, S., Rosair, G. M., Gramlich, V. & Mitra, S. (2008). Struct. Chem. 19, 459–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSari, M., Ercan, F., Yagbasan, R., Atakol, O. & Kenar, A. (1997). Z. Kristallogr. New Cryst. Struct. 212, 185–186.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds