metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2,4-di­bromo-6-[(2-phenyl­eth­yl)imino­meth­yl]phenolato-κ2N,O}cobalt(II)

aCollege of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, People's Republic of China
*Correspondence e-mail: yinzihust@163.com

(Received 18 September 2011; accepted 25 October 2011; online 29 October 2011)

In the title complex, [Co(C15H12Br2NO)2], the CoII atom is four-coordinated by two N,O-bidentate chelate Schiff base ligands, displaying a flattened tetra­hedral coordination environment. The CoII atom occupies a special position on a twofold rotation axis. In the crystal, mol­ecules are linked via weak C—H⋯Br inter­actions.

Related literature

For background to vitamin B12, see: Randaccio et al. (2010[Randaccio, L., Geremia, S., Demitri, N. & Wuerges, J. (2010). Molecules, 15, 3228-3259.]). For the anti­tumour activity of Schiff base–metal complexes, see: Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]) and for their anti-microbial activity, see: Panneerselvam et al. (2005[Panneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Sridhar, S. K. (2005). Eur. J. Med. Chem. 40, 225-229.]). For related structures, see: Chen et al. (2010[Chen, W., Li, Y., Cui, Y., Zhang, X., Zhu, H.-L. & Zeng, Q. (2010). Eur. J. Med. Chem. 45, 4473-4478.]); Li et al. (2010[Li, C., Li, R. & Zhang, S. (2010). Acta Cryst. E66, m1123.]); Jiang et al. (2008[Jiang, W., Mo, G.-D. & Jin, L. (2008). Acta Cryst. E64, m1394.]); For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C15H12Br2NO)2]

  • Mr = 823.08

  • Monoclinic, C 2/c

  • a = 22.5087 (16) Å

  • b = 4.8717 (4) Å

  • c = 28.864 (2) Å

  • β = 111.505 (1)°

  • V = 2944.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.04 mm−1

  • T = 291 K

  • 0.24 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.325, Tmax = 0.350

  • 14453 measured reflections

  • 2876 independent reflections

  • 2478 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.108

  • S = 1.01

  • 2876 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 1.916 (2)
Co1—N1 1.986 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Br2i 0.93 3.01 3.940 (3) 173
C8—H8B⋯Br1ii 0.97 2.93 3.814 (3) 151
C9—H9B⋯Br2iii 0.97 2.94 3.854 (3) 157
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-1, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cobalt is an important life-required element. For example, vitamin B12, also called cobalamin, is a water soluble vitamin with a key role in the normal functioning of the brain and nervous system, and for the formation of blood (Randaccio et al., 2010). In addition, the Schiff base metal complexes generally possess antitumour activities (Ren et al., 2002) and antimicrobial activities (Panneerselvam et al., 2005). By taking the biological importance of element cobalt into account, we synthesized the title complex with the bidentate N,O-donor Schiff base ligands (Scheme I).

In the title compound, the CoII atom occupies a special position on a twofold rotation axis to form a distorted tetrahedral coordination sphere. Cobalt(II) atom is four-coordinated by two imino N atoms and two phenolic O atoms from two bidentate Schiff-base ligands derived from the condensation of 3,5-dibromosalicylaldehyde and 2-phenylethylamine (Fig. 1). All bond lengths are within normal ranges (Allen et al., 1987). The C7N1 bond length of 1.284 (4) Å is within the range of 1.256 (14)–1.310 (15) Å observed in the analogous tetrahedral Co(II) species (Chen et al., 2010; Li et al., 2010). The Co–O and Co–N bond distances of 1.916 (2) and 1.986 (3) Å are also similar to those of 1.935 (2) and 2.006 (3) Å previously reported in the related cobalt(II) complex of a Schiff base ligand derived from the condensation of 3,5-dibromosalicylaldehyde and benzylamine (Jiang et al., 2008).

In the crystal structure, the molecules are linked via weak C–H···Br interactions (Fig.2).

Related literature top

For background to vitamin B12, see: Randaccio et al. (2010). For the antitumour activity of Schiff base–metal complexes, see: Ren et al. (2002) and for their anti-microbial activity, see: Panneerselvam et al. (2005). For related structures, see: Chen et al. (2010); Li et al. (2010); Jiang et al. (2008); For standard bond lengths, see: Allen et al. (1987).

Experimental top

3,5-Dibromosalicylaldehyde (560 mg, 2 mmol) and 2-phenylethylamine (242 mg, 2 mmol) were dissolved in a methanol solution (25 mL).The mixture was stirred at room temperature for 1 h to give an orange solution, which was added to a methanol solution (15 mL) of Co(NO3)2.6H2O (280 mg, 1 mmol). The mixture was stirred for another 25 min at room temperature to give a red solution and then filtered. The filtrate was kept in air for 7 days, forming red blocky crystals. The crystals were isolated and dried in a vacuum desiccator containing anhydrous CaCl2, in about 64% yield. Anal. Calcd for C30H24Br4CoN2O2: C, 43.78; H, 2.94; N, 3.40. Found: C, 43.66; H, 2.99; N, 3.31%. IR (KBr, cm-1): 3423, 2909, 2361, 1614, 1502, 1433, 1410, 1310, 1210, 1152, 865, 749, 703, 486, 437.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 and 0.97 Å, and with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with the atom numbering scheme of the unique atoms (30% probability ellipsoids).
[Figure 2] Fig. 2. Partial packing view showing the chain formed through weak C–H···Br interactions.
Bis{2,4-dibromo-6-[(2-phenylethyl)iminomethyl]phenolato- κ2N,O}cobalt(II) top
Crystal data top
[Co(C15H12Br2NO)2]F(000) = 1604
Mr = 823.08Dx = 1.857 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5864 reflections
a = 22.5087 (16) Åθ = 2.9–28.1°
b = 4.8717 (4) ŵ = 6.04 mm1
c = 28.864 (2) ÅT = 291 K
β = 111.505 (1)°Block, red
V = 2944.8 (4) Å30.24 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2876 independent reflections
Radiation source: fine-focus sealed tube2478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2727
Tmin = 0.325, Tmax = 0.350k = 66
14453 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.082P)2 + 0.812P]
where P = (Fo2 + 2Fc2)/3
2876 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Co(C15H12Br2NO)2]V = 2944.8 (4) Å3
Mr = 823.08Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.5087 (16) ŵ = 6.04 mm1
b = 4.8717 (4) ÅT = 291 K
c = 28.864 (2) Å0.24 × 0.23 × 0.22 mm
β = 111.505 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2876 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2478 reflections with I > 2σ(I)
Tmin = 0.325, Tmax = 0.350Rint = 0.031
14453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.01Δρmax = 0.79 e Å3
2876 reflectionsΔρmin = 0.78 e Å3
177 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12749 (15)0.3862 (7)0.22685 (12)0.0389 (7)
C20.08497 (15)0.5880 (6)0.19768 (11)0.0367 (7)
C30.09703 (15)0.6772 (6)0.15481 (11)0.0365 (6)
C40.14508 (15)0.5753 (6)0.14172 (12)0.0409 (7)
H40.15090.63790.11320.049*
C50.18509 (15)0.3773 (7)0.17151 (12)0.0430 (7)
C60.17739 (16)0.2844 (7)0.21350 (12)0.0435 (8)
H60.20520.15340.23330.052*
C70.12310 (17)0.2717 (7)0.27173 (12)0.0431 (7)
H70.15610.15600.29030.052*
C80.08535 (19)0.1846 (8)0.33657 (12)0.0492 (8)
H8A0.11250.02390.34180.059*
H8B0.04380.12570.33580.059*
C90.1142 (2)0.3836 (9)0.37889 (14)0.0656 (11)
H9A0.08760.54640.37290.079*
H9B0.15600.43900.37990.079*
C100.12060 (19)0.2619 (7)0.42885 (13)0.0503 (9)
C110.0790 (2)0.3341 (10)0.45192 (14)0.0613 (10)
H110.04790.46610.43740.074*
C120.0828 (3)0.2136 (10)0.49615 (16)0.0701 (12)
H120.05360.26160.51070.084*
C130.1281 (3)0.0287 (10)0.51828 (15)0.0702 (12)
H130.13090.04790.54850.084*
C140.1703 (3)0.0485 (13)0.49693 (19)0.0972 (19)
H140.20120.18030.51210.117*
C150.1668 (2)0.0710 (11)0.45224 (17)0.0773 (14)
H150.19620.02090.43800.093*
Br10.040636 (17)0.94006 (7)0.113456 (12)0.04757 (15)
Br20.250012 (17)0.22456 (9)0.151646 (14)0.05805 (16)
Co10.00000.52246 (15)0.25000.04521 (19)
N10.07834 (13)0.3134 (6)0.28853 (10)0.0425 (6)
O10.03706 (12)0.6888 (5)0.20677 (9)0.0468 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0389 (16)0.0510 (18)0.0320 (16)0.0033 (13)0.0192 (13)0.0013 (13)
C20.0394 (16)0.0439 (17)0.0338 (16)0.0048 (12)0.0219 (13)0.0012 (12)
C30.0406 (16)0.0432 (16)0.0303 (15)0.0029 (13)0.0182 (13)0.0005 (12)
C40.0460 (18)0.0523 (19)0.0324 (16)0.0078 (15)0.0239 (14)0.0023 (13)
C50.0360 (16)0.0589 (19)0.0414 (18)0.0039 (14)0.0226 (14)0.0086 (15)
C60.0364 (16)0.059 (2)0.0370 (17)0.0031 (14)0.0155 (14)0.0028 (14)
C70.0444 (18)0.0548 (19)0.0336 (16)0.0020 (14)0.0184 (14)0.0063 (14)
C80.054 (2)0.064 (2)0.0345 (17)0.0061 (17)0.0213 (15)0.0100 (15)
C90.091 (3)0.069 (2)0.038 (2)0.021 (2)0.026 (2)0.0042 (17)
C100.062 (2)0.057 (2)0.0324 (17)0.0141 (17)0.0174 (16)0.0011 (14)
C110.067 (2)0.074 (3)0.040 (2)0.005 (2)0.0150 (18)0.0093 (18)
C120.089 (3)0.087 (3)0.044 (2)0.001 (3)0.035 (2)0.004 (2)
C130.095 (3)0.083 (3)0.036 (2)0.004 (3)0.027 (2)0.0095 (19)
C140.114 (4)0.133 (5)0.050 (3)0.052 (4)0.036 (3)0.032 (3)
C150.076 (3)0.116 (4)0.047 (2)0.022 (3)0.032 (2)0.013 (2)
Br10.0584 (2)0.0515 (2)0.0413 (2)0.00711 (15)0.02841 (17)0.00863 (13)
Br20.0447 (2)0.0830 (3)0.0575 (3)0.00539 (17)0.03169 (19)0.00833 (18)
Co10.0441 (4)0.0638 (4)0.0359 (4)0.0000.0243 (3)0.000
N10.0470 (16)0.0554 (16)0.0312 (14)0.0017 (13)0.0216 (12)0.0052 (12)
O10.0522 (14)0.0575 (14)0.0442 (13)0.0103 (11)0.0337 (11)0.0089 (11)
Geometric parameters (Å, º) top
C1—C61.405 (5)C9—C101.516 (5)
C1—C21.415 (5)C9—H9A0.9700
C1—C71.447 (4)C9—H9B0.9700
C2—O11.296 (4)C10—C151.374 (6)
C2—C31.428 (4)C10—C111.378 (6)
C3—C41.363 (4)C11—C121.379 (6)
C3—Br11.888 (3)C11—H110.9300
C4—C51.383 (5)C12—C131.335 (7)
C4—H40.9300C12—H120.9300
C5—C61.363 (5)C13—C141.360 (7)
C5—Br21.906 (3)C13—H130.9300
C6—H60.9300C14—C151.391 (7)
C7—N11.284 (4)C14—H140.9300
C7—H70.9300C15—H150.9300
C8—N11.477 (4)Co1—O11.916 (2)
C8—C91.507 (5)Co1—O1i1.916 (2)
C8—H8A0.9700Co1—N11.986 (3)
C8—H8B0.9700Co1—N1i1.986 (3)
C6—C1—C2121.1 (3)C10—C9—H9B109.1
C6—C1—C7115.7 (3)H9A—C9—H9B107.8
C2—C1—C7123.2 (3)C15—C10—C11117.4 (3)
O1—C2—C1125.0 (3)C15—C10—C9121.6 (4)
O1—C2—C3119.8 (3)C11—C10—C9121.0 (4)
C1—C2—C3115.2 (3)C10—C11—C12121.1 (4)
C4—C3—C2123.5 (3)C10—C11—H11119.5
C4—C3—Br1119.3 (2)C12—C11—H11119.5
C2—C3—Br1117.2 (2)C13—C12—C11120.5 (4)
C3—C4—C5118.9 (3)C13—C12—H12119.8
C3—C4—H4120.5C11—C12—H12119.8
C5—C4—H4120.5C12—C13—C14120.5 (4)
C6—C5—C4121.2 (3)C12—C13—H13119.8
C6—C5—Br2120.0 (3)C14—C13—H13119.8
C4—C5—Br2118.8 (2)C13—C14—C15119.5 (5)
C5—C6—C1120.1 (3)C13—C14—H14120.2
C5—C6—H6119.9C15—C14—H14120.2
C1—C6—H6119.9C10—C15—C14121.0 (5)
N1—C7—C1126.7 (3)C10—C15—H15119.5
N1—C7—H7116.7C14—C15—H15119.5
C1—C7—H7116.7O1—Co1—O1i129.98 (15)
N1—C8—C9110.7 (3)O1—Co1—N194.15 (10)
N1—C8—H8A109.5O1i—Co1—N1111.18 (11)
C9—C8—H8A109.5O1—Co1—N1i111.18 (11)
N1—C8—H8B109.5O1i—Co1—N1i94.14 (10)
C9—C8—H8B109.5N1—Co1—N1i118.31 (17)
H8A—C8—H8B108.1C7—N1—C8117.3 (3)
C8—C9—C10112.5 (3)C7—N1—Co1121.9 (2)
C8—C9—H9A109.1C8—N1—Co1120.7 (2)
C10—C9—H9A109.1C2—O1—Co1124.4 (2)
C8—C9—H9B109.1
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Br2ii0.933.013.940 (3)173
C8—H8B···Br1iii0.972.933.814 (3)151
C9—H9B···Br2iv0.972.943.854 (3)157
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C15H12Br2NO)2]
Mr823.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)22.5087 (16), 4.8717 (4), 28.864 (2)
β (°) 111.505 (1)
V3)2944.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.04
Crystal size (mm)0.24 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.325, 0.350
No. of measured, independent and
observed [I > 2σ(I)] reflections
14453, 2876, 2478
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.108, 1.01
No. of reflections2876
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.78

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O11.916 (2)Co1—N11.986 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Br2i0.933.013.940 (3)172.5
C8—H8B···Br1ii0.972.933.814 (3)151.0
C9—H9B···Br2iii0.972.943.854 (3)157.4
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the school scientific research fund of Henan University of Technology.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Li, Y., Cui, Y., Zhang, X., Zhu, H.-L. & Zeng, Q. (2010). Eur. J. Med. Chem. 45, 4473–4478.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJiang, W., Mo, G.-D. & Jin, L. (2008). Acta Cryst. E64, m1394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C., Li, R. & Zhang, S. (2010). Acta Cryst. E66, m1123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPanneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Sridhar, S. K. (2005). Eur. J. Med. Chem. 40, 225–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRandaccio, L., Geremia, S., Demitri, N. & Wuerges, J. (2010). Molecules, 15, 3228–3259.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds