organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di-tert-butyl-2,2′-[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl)bis­­(methyl­ene)]diphenol

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 21 September 2011; accepted 23 September 2011; online 12 October 2011)

In the title compound, C29H42N2O2, the heterocyclic ring has a twist conformation. The cyclohexane ring adopts a chair conformation. The dihedral angle between the aromatic rings is 32.74 (6)°. The mol­ecular conformation is stabilized by two intramolecular O—H⋯N hydrogen bonds with graph-set motif S(6). The crystal packing is stabilized by C—H⋯O and C—H⋯π inter­actions.

Related literature

For related structures, see: Rivera et al. (2009[Rivera, A., Quiroga, D., Ríos-Motta, J., Carda, J. & Peris, G. (2009). J. Chem. Crystallogr. 39, 827-830.], 2010[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o931.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C29H42N2O2

  • Mr = 450.65

  • Triclinic, [P \overline 1]

  • a = 6.2383 (2) Å

  • b = 14.2296 (5) Å

  • c = 15.6530 (6) Å

  • α = 105.942 (3)°

  • β = 95.737 (3)°

  • γ = 98.041 (3)°

  • V = 1308.87 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 120 K

  • 0.22 × 0.10 × 0.08 mm

Data collection
  • Agilent Xcalibur Atlas Gemini Ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011)[Agilent (2011). CrysAlis PRO and CrysAlis PRO CCD. Agilent Technologies, Yarnton, England.] Tmin = 0.246, Tmax = 0.581

  • 28373 measured reflections

  • 4676 independent reflections

  • 3632 reflections with I > 2σ(I)

  • Rint = 0.139

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.143

  • S = 1.01

  • 4676 reflections

  • 304 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C9–C14 and C20–C25 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.98 1.77 2.6585 (18) 148
O2—H1O2⋯N2 0.89 1.86 2.6794 (18) 153
C2—H2⋯O2i 0.98 2.45 3.367 (18) 155
C5—H5BCg3ii 0.96 2.87 3.625 (2) 135
C19—H19ACg4iii 0.96 2.84 3.6722 (18) 144
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis PRO CCD. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It is known that intramolecular O—H···N hydrogen bonds in Mannich and Schiff bases play a key role in the themodynamic stability of these bases. In our group, research has been focused on the development of novel di-Mannich bases (Rivera et al., 2009, 2010) and their hydrogen-bonded structures. In this work, we report the crystal structure of 4,4'-ditertbutyl-3,3',5,5'-tetramethyl-2,2'-[(3aR,7aR/3aS,7aS)-2,3,3a,4,5,6,7, 7a-octahydro-1H-1,3-benzimidazole-1,3-diyl)bis(methylene)]diphenol (I) as hydrogen bonding model. The molecular structure and atom-numbering scheme for (I) are shown in Fig.1. The bond lengths are normal and comparable to the corresponding values observed in the related structures (Rivera et al., 2009, 2010). The aromatic rings (C9—C14; C20—C25) are essentially planar with the maximum deviation from planarity being 0.0094 (19)° for atom C18.

As with related structures in this series, the heterocyclic ring has a twisted conformation on C2—C7, (Q(2)= 0.4380 (10) Å, ϕ = 120.3 (2)°, (Cremer & Pople, 1975), and as is typical for such Mannich bases and the molecular conformation is stabilized by two intramolecular O—H···N hydrogen-bond interaction with set graph motif S(6) (Bernstein et al. 1995). However, contrary to other structures, where the difference in the hydrogen bond lengths may be considered to be negligible, the two observed intramolecular hydrogen bond distances were different (Table 1). Considering the similarity of the chemical environment around of both nitrogen atoms, it is then surprising to see the difference in the O—H distances between O2—H2 [O—H = 0.89 Å (2)] and O1—H1 [O—H = 0.98 Å (18)], which is longer compared to the previous compounds (Rivera et al., 2009, 2010). Our observation for this difference can be correlated to the difference in the participation of each one of oxygen atoms in hydrogen-bond networks. Although a hydroxyl group is involved as an acceptor hydrogen bond in an intermolecular hydrogen bond, the other is a non-intermolecular-hydrogen-bonded hydroxyl group. The intermolecular hydrogen bonds [C2—H2A···O2i, symmetry code: x + 1, y, z] bridge the molecules through head-to-tail into a one-dimensional chain running parallel to the a axis (Figure 2). These chains are stabilized by C—H···π interactions (Table 1).

Related literature top

For related structures, see: Rivera et al. (2009, 2010). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).

Experimental top

To a dioxane:water (7 ml) solution of the aminal (2R,7R,11S,16S)-1,8,10,17- tetraazapentacyclo[8.8.1.18,17.02,7.011,16]- icosane (276 mg, 1.00 mmol) was added dropwise a dioxane solution (3 ml) containing two equivalents of p-tertbutylphenol (300 mg, 2.00 mmol). The mixture was refluxed for about 10 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 47%, M.p. = 430–431 K). Single crystals of racemic (I) were grown from a chloroform: methanol solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

Refinement top

According to common practice H atoms bonded C atoms were kept in ideal positions with C—H distance 0.96 Å during the refinement. The isotropic displacement parameters of the hydrogen atoms were calculated as 1.2*Ueq of the parent atom. The distance between hydrogen and oxygen atom in hydroxyl group was fixed to the distance 0.87 Å. The quality of the crystals was very low. The selected crystal for measurement was the best one from several attempts.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along b axis.
4,4'-Di-tert-butyl-2,2'-[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a- octahydro-1H-1,3-benzimidazole-1,3-diyl)bis(methylene)]diphenol top
Crystal data top
C29H42N2O2Z = 2
Mr = 450.65F(000) = 492
Triclinic, P1Dx = 1.143 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 6.2383 (2) ÅCell parameters from 9605 reflections
b = 14.2296 (5) Åθ = 3.0–67.2°
c = 15.6530 (6) ŵ = 0.55 mm1
α = 105.942 (3)°T = 120 K
β = 95.737 (3)°Prism, colourless
γ = 98.041 (3)°0.22 × 0.10 × 0.08 mm
V = 1308.87 (8) Å3
Data collection top
Agilent Xcalibur Atlas Gemini Ultra
diffractometer
4676 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3632 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.139
Detector resolution: 10.3784 pixels mm-1θmax = 67.3°, θmin = 3.0°
Rotation method data acquisition using ω scansh = 77
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 1717
Tmin = 0.246, Tmax = 0.581l = 1818
28373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0802P)2]
where P = (Fo2 + 2Fc2)/3
4676 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C29H42N2O2γ = 98.041 (3)°
Mr = 450.65V = 1308.87 (8) Å3
Triclinic, P1Z = 2
a = 6.2383 (2) ÅCu Kα radiation
b = 14.2296 (5) ŵ = 0.55 mm1
c = 15.6530 (6) ÅT = 120 K
α = 105.942 (3)°0.22 × 0.10 × 0.08 mm
β = 95.737 (3)°
Data collection top
Agilent Xcalibur Atlas Gemini Ultra
diffractometer
4676 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
3632 reflections with I > 2σ(I)
Tmin = 0.246, Tmax = 0.581Rint = 0.139
28373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
4676 reflectionsΔρmin = 0.27 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom. The distance between hydrogen and oxygen atom in hydroxyl group was fixed to the distance 0.87 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7423 (2)0.60526 (9)0.68014 (9)0.0334 (3)
H1O10.60830.55980.68030.040*
O20.2846 (2)0.45402 (10)0.80993 (9)0.0357 (3)
H1O20.16760.47210.78650.043*
N10.3185 (2)0.53749 (10)0.67034 (9)0.0253 (3)
N20.1289 (2)0.48505 (10)0.77727 (9)0.0244 (3)
C10.2544 (3)0.57266 (12)0.76055 (11)0.0266 (4)
H1A0.38310.60010.80550.032*
H1B0.16500.62350.76240.032*
C20.1894 (3)0.39934 (12)0.71235 (11)0.0253 (4)
H20.33790.39240.73360.030*
C30.0424 (3)0.29864 (12)0.68838 (11)0.0306 (4)
H3A0.10590.30350.66700.037*
H3B0.03980.27480.74070.037*
C40.1353 (4)0.22741 (14)0.61467 (13)0.0379 (4)
H4A0.27720.21820.63920.045*
H4B0.03930.16330.59580.045*
C50.1597 (4)0.26467 (14)0.53294 (13)0.0403 (5)
H5A0.01570.26490.50330.048*
H5B0.22950.21950.49080.048*
C60.2954 (3)0.36938 (14)0.55839 (12)0.0363 (4)
H6A0.44580.36830.58030.044*
H6B0.29420.39370.50620.044*
C70.1961 (3)0.43638 (12)0.63083 (11)0.0280 (4)
H70.04690.43940.60680.034*
C80.2926 (3)0.60451 (12)0.61501 (11)0.0276 (4)
H8A0.14750.62160.61560.033*
H8B0.30690.57100.55340.033*
C90.4626 (3)0.69832 (12)0.64956 (11)0.0255 (4)
C100.6796 (3)0.69352 (12)0.67912 (11)0.0263 (4)
C110.8342 (3)0.77961 (13)0.70752 (11)0.0299 (4)
H110.97770.77680.72790.036*
C120.7777 (3)0.87005 (13)0.70595 (11)0.0290 (4)
H120.88420.92700.72540.035*
C130.5642 (3)0.87735 (12)0.67573 (11)0.0268 (4)
C140.4105 (3)0.78981 (12)0.64918 (11)0.0263 (4)
H140.26620.79300.63030.032*
C150.4973 (3)0.97661 (13)0.67471 (12)0.0323 (4)
C160.4002 (4)1.01787 (15)0.76044 (15)0.0449 (5)
H16A0.27710.97080.76360.058*
H16B0.35341.07910.75970.058*
H16C0.50901.02950.81180.058*
C170.3244 (4)0.96239 (14)0.59319 (14)0.0426 (5)
H17A0.19250.92220.59880.055*
H17B0.37830.93020.53930.055*
H17C0.29421.02590.59050.055*
C180.6922 (4)1.05243 (15)0.67086 (17)0.0472 (5)
H18A0.64251.11160.66530.061*
H18B0.76201.02520.62000.061*
H18C0.79481.06820.72490.061*
C190.1725 (3)0.48777 (12)0.87265 (11)0.0260 (4)
H19A0.16120.55290.91060.031*
H19B0.32030.47650.88600.031*
C200.0128 (3)0.41008 (12)0.89290 (11)0.0259 (4)
C210.2101 (3)0.39674 (13)0.85995 (11)0.0288 (4)
C220.3563 (3)0.32395 (13)0.87683 (12)0.0321 (4)
H220.50410.31470.85460.039*
C230.2838 (3)0.26467 (13)0.92669 (12)0.0299 (4)
H230.38470.21610.93740.036*
C240.0639 (3)0.27594 (12)0.96120 (11)0.0269 (4)
C250.0807 (3)0.34982 (12)0.94307 (10)0.0256 (4)
H250.22830.35920.96550.031*
C260.0192 (3)0.20602 (13)1.01118 (11)0.0304 (4)
C270.1570 (3)0.16459 (15)1.05918 (13)0.0388 (4)
H27A0.20920.21851.09830.050*
H27B0.09580.12601.09380.050*
H27C0.27630.12331.01550.050*
C280.0852 (4)0.11927 (15)0.94238 (13)0.0417 (5)
H28A0.14500.07670.97290.054*
H28B0.19300.14460.91090.054*
H28C0.04130.08230.90040.054*
C290.2192 (3)0.25932 (15)1.08137 (12)0.0367 (4)
H29A0.18400.31731.12180.048*
H29B0.33830.27851.05180.048*
H29C0.26090.21551.11450.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (6)0.0344 (6)0.0392 (7)0.0074 (5)0.0080 (5)0.0162 (5)
O20.0280 (6)0.0433 (7)0.0428 (7)0.0066 (5)0.0077 (5)0.0232 (6)
N10.0319 (7)0.0244 (7)0.0210 (7)0.0028 (6)0.0063 (5)0.0091 (5)
N20.0295 (7)0.0236 (7)0.0192 (7)0.0032 (5)0.0046 (5)0.0053 (5)
C10.0319 (8)0.0250 (8)0.0217 (8)0.0031 (7)0.0061 (7)0.0050 (6)
C20.0320 (8)0.0243 (8)0.0193 (8)0.0048 (7)0.0053 (6)0.0052 (6)
C30.0390 (9)0.0276 (8)0.0239 (8)0.0001 (7)0.0072 (7)0.0071 (7)
C40.0531 (11)0.0270 (9)0.0314 (10)0.0018 (8)0.0096 (8)0.0062 (7)
C50.0603 (13)0.0302 (9)0.0262 (9)0.0008 (9)0.0121 (9)0.0029 (8)
C60.0512 (11)0.0321 (9)0.0246 (9)0.0017 (8)0.0127 (8)0.0071 (7)
C70.0340 (9)0.0264 (8)0.0224 (8)0.0006 (7)0.0044 (7)0.0072 (7)
C80.0319 (8)0.0285 (8)0.0230 (8)0.0009 (7)0.0025 (7)0.0112 (7)
C90.0285 (8)0.0294 (8)0.0191 (8)0.0017 (7)0.0063 (6)0.0086 (6)
C100.0293 (8)0.0320 (9)0.0215 (8)0.0063 (7)0.0099 (6)0.0113 (7)
C110.0262 (8)0.0398 (10)0.0240 (8)0.0024 (7)0.0056 (7)0.0110 (7)
C120.0304 (9)0.0311 (9)0.0224 (8)0.0026 (7)0.0055 (7)0.0059 (7)
C130.0311 (8)0.0289 (8)0.0200 (8)0.0016 (7)0.0074 (6)0.0069 (6)
C140.0273 (8)0.0308 (8)0.0228 (8)0.0032 (7)0.0059 (6)0.0113 (7)
C150.0366 (9)0.0272 (9)0.0319 (9)0.0033 (7)0.0080 (7)0.0068 (7)
C160.0506 (12)0.0362 (10)0.0434 (11)0.0067 (9)0.0140 (9)0.0024 (9)
C170.0557 (12)0.0296 (9)0.0424 (11)0.0083 (8)0.0004 (9)0.0126 (8)
C180.0463 (11)0.0354 (10)0.0626 (14)0.0005 (9)0.0120 (10)0.0208 (10)
C190.0285 (8)0.0285 (8)0.0193 (8)0.0031 (6)0.0047 (6)0.0047 (6)
C200.0308 (8)0.0280 (8)0.0179 (7)0.0050 (7)0.0072 (6)0.0039 (6)
C210.0299 (9)0.0331 (9)0.0246 (8)0.0082 (7)0.0072 (7)0.0081 (7)
C220.0273 (8)0.0365 (9)0.0331 (9)0.0044 (7)0.0074 (7)0.0106 (8)
C230.0312 (9)0.0297 (8)0.0278 (9)0.0002 (7)0.0100 (7)0.0075 (7)
C240.0348 (9)0.0275 (8)0.0173 (7)0.0040 (7)0.0078 (7)0.0043 (6)
C250.0285 (8)0.0300 (8)0.0169 (7)0.0032 (7)0.0056 (6)0.0045 (6)
C260.0394 (9)0.0300 (9)0.0222 (8)0.0043 (7)0.0071 (7)0.0083 (7)
C270.0463 (11)0.0394 (10)0.0343 (10)0.0032 (8)0.0105 (8)0.0170 (8)
C280.0588 (13)0.0361 (10)0.0316 (10)0.0154 (9)0.0094 (9)0.0077 (8)
C290.0451 (11)0.0405 (10)0.0261 (9)0.0045 (8)0.0028 (8)0.0147 (8)
Geometric parameters (Å, º) top
O1—C101.370 (2)C13—C151.531 (2)
O1—H1O10.9834C14—H140.9300
O2—C211.370 (2)C15—C181.526 (3)
O2—H1O20.8859C15—C161.530 (3)
N1—C71.465 (2)C15—C171.534 (3)
N1—C81.468 (2)C16—H16A0.9600
N1—C11.478 (2)C16—H16B0.9600
N2—C11.477 (2)C16—H16C0.9600
N2—C21.479 (2)C17—H17A0.9600
N2—C191.479 (2)C17—H17B0.9600
C1—H1A0.9700C17—H17C0.9600
C1—H1B0.9700C18—H18A0.9600
C2—C71.510 (2)C18—H18B0.9600
C2—C31.518 (2)C18—H18C0.9600
C2—H20.9800C19—C201.504 (2)
C3—C41.533 (3)C19—H19A0.9700
C3—H3A0.9700C19—H19B0.9700
C3—H3B0.9700C20—C251.391 (2)
C4—C51.526 (3)C20—C211.402 (2)
C4—H4A0.9700C21—C221.382 (3)
C4—H4B0.9700C22—C231.387 (3)
C5—C61.533 (3)C22—H220.9300
C5—H5A0.9700C23—C241.393 (2)
C5—H5B0.9700C23—H230.9300
C6—C71.514 (3)C24—C251.396 (2)
C6—H6A0.9700C24—C261.537 (2)
C6—H6B0.9700C25—H250.9300
C7—H70.9800C26—C291.531 (3)
C8—C91.514 (2)C26—C271.532 (3)
C8—H8A0.9700C26—C281.534 (3)
C8—H8B0.9700C27—H27A0.9600
C9—C141.387 (2)C27—H27B0.9600
C9—C101.404 (2)C27—H27C0.9600
C10—C111.383 (3)C28—H28A0.9600
C11—C121.387 (3)C28—H28B0.9600
C11—H110.9300C28—H28C0.9600
C12—C131.396 (2)C29—H29A0.9600
C12—H120.9300C29—H29B0.9600
C13—C141.395 (2)C29—H29C0.9600
C10—O1—H1O1106.4C13—C14—H14118.4
C21—O2—H1O2102.7C18—C15—C16108.66 (16)
C7—N1—C8114.76 (13)C18—C15—C13111.78 (15)
C7—N1—C1105.78 (13)C16—C15—C13108.71 (15)
C8—N1—C1113.91 (13)C18—C15—C17108.22 (16)
C1—N2—C2104.36 (12)C16—C15—C17108.85 (17)
C1—N2—C19111.45 (12)C13—C15—C17110.56 (14)
C2—N2—C19115.31 (12)C15—C16—H16A109.5
N2—C1—N1106.28 (12)C15—C16—H16B109.5
N2—C1—H1A110.5H16A—C16—H16B109.5
N1—C1—H1A110.5C15—C16—H16C109.5
N2—C1—H1B110.5H16A—C16—H16C109.5
N1—C1—H1B110.5H16B—C16—H16C109.5
H1A—C1—H1B108.7C15—C17—H17A109.5
N2—C2—C7100.86 (12)C15—C17—H17B109.5
N2—C2—C3119.27 (14)H17A—C17—H17B109.5
C7—C2—C3110.48 (13)C15—C17—H17C109.5
N2—C2—H2108.6H17A—C17—H17C109.5
C7—C2—H2108.6H17B—C17—H17C109.5
C3—C2—H2108.6C15—C18—H18A109.5
C2—C3—C4107.44 (15)C15—C18—H18B109.5
C2—C3—H3A110.2H18A—C18—H18B109.5
C4—C3—H3A110.2C15—C18—H18C109.5
C2—C3—H3B110.2H18A—C18—H18C109.5
C4—C3—H3B110.2H18B—C18—H18C109.5
H3A—C3—H3B108.5N2—C19—C20110.98 (13)
C5—C4—C3112.87 (16)N2—C19—H19A109.4
C5—C4—H4A109.0C20—C19—H19A109.4
C3—C4—H4A109.0N2—C19—H19B109.4
C5—C4—H4B109.0C20—C19—H19B109.4
C3—C4—H4B109.0H19A—C19—H19B108.0
H4A—C4—H4B107.8C25—C20—C21118.67 (16)
C4—C5—C6112.16 (15)C25—C20—C19121.69 (15)
C4—C5—H5A109.2C21—C20—C19119.64 (15)
C6—C5—H5A109.2O2—C21—C22119.48 (15)
C4—C5—H5B109.2O2—C21—C20120.80 (15)
C6—C5—H5B109.2C22—C21—C20119.71 (16)
H5A—C5—H5B107.9C21—C22—C23120.34 (16)
C7—C6—C5108.19 (16)C21—C22—H22119.8
C7—C6—H6A110.1C23—C22—H22119.8
C5—C6—H6A110.1C22—C23—C24121.78 (16)
C7—C6—H6B110.1C22—C23—H23119.1
C5—C6—H6B110.1C24—C23—H23119.1
H6A—C6—H6B108.4C23—C24—C25116.80 (15)
N1—C7—C2101.63 (13)C23—C24—C26121.90 (15)
N1—C7—C6115.78 (15)C25—C24—C26121.16 (15)
C2—C7—C6111.66 (14)C20—C25—C24122.69 (16)
N1—C7—H7109.1C20—C25—H25118.7
C2—C7—H7109.1C24—C25—H25118.7
C6—C7—H7109.1C29—C26—C27108.02 (15)
N1—C8—C9111.07 (13)C29—C26—C28108.58 (16)
N1—C8—H8A109.4C27—C26—C28108.83 (16)
C9—C8—H8A109.4C29—C26—C24111.28 (14)
N1—C8—H8B109.4C27—C26—C24111.77 (15)
C9—C8—H8B109.4C28—C26—C24108.30 (14)
H8A—C8—H8B108.0C26—C27—H27A109.5
C14—C9—C10118.58 (15)C26—C27—H27B109.5
C14—C9—C8121.12 (15)H27A—C27—H27B109.5
C10—C9—C8120.25 (15)C26—C27—H27C109.5
O1—C10—C11119.16 (15)H27A—C27—H27C109.5
O1—C10—C9121.45 (15)H27B—C27—H27C109.5
C11—C10—C9119.38 (15)C26—C28—H28A109.5
C10—C11—C12120.79 (16)C26—C28—H28B109.5
C10—C11—H11119.6H28A—C28—H28B109.5
C12—C11—H11119.6C26—C28—H28C109.5
C11—C12—C13121.37 (15)H28A—C28—H28C109.5
C11—C12—H12119.3H28B—C28—H28C109.5
C13—C12—H12119.3C26—C29—H29A109.5
C14—C13—C12116.71 (15)C26—C29—H29B109.5
C14—C13—C15120.97 (15)H29A—C29—H29B109.5
C12—C13—C15122.28 (15)C26—C29—H29C109.5
C9—C14—C13123.14 (16)H29A—C29—H29C109.5
C9—C14—H14118.4H29B—C29—H29C109.5
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C9–C14 and C20–C25 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.981.772.6585 (18)148
O2—H1O2···N20.891.862.6794 (18)153
C2—H2···O2i0.982.453.367 (18)155
C5—H5B···Cg3ii0.962.873.625 (2)135
C19—H19A···Cg4iii0.962.843.6722 (18)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC29H42N2O2
Mr450.65
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.2383 (2), 14.2296 (5), 15.6530 (6)
α, β, γ (°)105.942 (3), 95.737 (3), 98.041 (3)
V3)1308.87 (8)
Z2
Radiation typeCu Kα
µ (mm1)0.55
Crystal size (mm)0.22 × 0.10 × 0.08
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini Ultra
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.246, 0.581
No. of measured, independent and
observed [I > 2σ(I)] reflections
28373, 4676, 3632
Rint0.139
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.01
No. of reflections4676
No. of parameters304
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C9–C14 and C20–C25 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.981.772.6585 (18)148
O2—H1O2···N20.891.862.6794 (18)153
C2—H2···O2i0.982.453.367 (18)155
C5—H5B···Cg3ii0.962.873.625 (2)135
C19—H19A···Cg4iii0.962.843.6722 (18)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic.

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis PRO CCD. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Carda, J. & Peris, G. (2009). J. Chem. Crystallogr. 39, 827–830.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o931.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds