organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2817-o2818

Di­ethyl 4,4′-dihy­dr­oxy-3,3′-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl]bis­­(methyl­ene)}dibenzoate

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 23 September 2011; accepted 26 September 2011; online 5 October 2011)

The heterocyclic ring in the title compound, C27H34N2O6, has an envelope conformation on one of the bridgehead C atoms [Q(2) = 0.4487 (19) Å and φ = 291.3 (2)°]. Two strong intra­molecular O—H⋯N hydrogen bonds stabilize the mol­ecular conformation. The benzoate groups differ in the relative orientations of the ethyl groups, as quanti­fied by the values of the C—O—C—C torsion angles of −86.5 (2) and −178.97 (17)°. The carbonyl groups are nearly coplanar with the benzene rings, forming C—C—C—O torsion angles of 0.9 (3) and 3.4 (3)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For related structures, see: Rivera et al. (2010[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o931.], 2011a[Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011a). Acta Cryst. E67, o2627-o2628.],b[Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011b). Acta Cryst. E67, o2297.]). For the background to this work, see: Van den Enden & Geise (1981[Van den Enden, L. & Geise, H. J. (1981). J. Mol. Struct. 74, 309-320.]); Geise et al. (1971[Geise, H. J., Buys, H. R. & Mijlhoff, F. C. (1971). J. Mol. Struct. 9, 447-454.]). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975[Murray-Rust, P. & Riddell, F. G. (1975). Can. J. Chem. 53, 1933-1935.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C27H34N2O6

  • Mr = 482.6

  • Triclinic, [P \overline 1]

  • a = 8.1132 (4) Å

  • b = 10.9796 (7) Å

  • c = 15.2450 (8) Å

  • α = 89.580 (5)°

  • β = 81.028 (4)°

  • γ = 70.028 (5)°

  • V = 1259.19 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 120 K

  • 0.46 × 0.18 × 0.11 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.752, Tmax = 1

  • 11294 measured reflections

  • 4430 independent reflections

  • 3313 reflections with I > 3σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.64

  • 4430 reflections

  • 323 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯N1 0.89 (3) 1.82 (3) 2.663 (2) 156.9 (19)
O6—H6o⋯N2 0.91 (2) 1.82 (3) 2.669 (2) 154 (3)
C2—H2⋯O1i 0.96 2.58 3.362 (2) 138
C3—H3⋯O4ii 0.96 2.57 3.436 (2) 151
C8—H8b⋯O1i 0.96 2.57 3.336 (2) 137
C22—H22⋯O3iii 0.96 2.44 3.351 (2) 159
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The title compound (I) was obtained from ethyl p-hydroxybenzoate and (2R,7R,11S,16S)-1,8,10,17- tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane by a Mannich type reaction as an extension of our work on the structural studies of di-Mannich bases with the 2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole chiral core (Rivera et al., 2010; Rivera et al., 2011a,b).

In the molecule of the title compound (Fig. 1), x-rays analysis indicated that in the cyclohexane ring the C7—C2—C3—C4 endocyclic torsion angle is increased from the normal 55° to 65.6 (2) °. The endocyclic N1—C2—C3—N2 torsion angle in the heterocyclic ring is -45.57 (16) °, which is in the order of the maximum value for torsion angles in five-membered rings (Van den Enden & Geise, 1981). These results confirm the existence of a puckering of the perhydrobenzimidazole moiety, where the 1,2-cyclohexanediamine fragment adopts a chair conformation with shorter endocyclic bond angles [C3—C4—C5, 106.90 (17)°; C2—C7—C6, 106.70 (17)°] and longer bond angles [C4—C5—C6, 112.75 (15); C5—C6—C7; 112.22 (17)°] respect to the normal bond angles [111.4 °. Geise et al., 1971] in a ideal chair conformation. The heterocyclic ring has a envelope conformation on C3 (Q(2) = 0.4487 (19) Å, ϕ = 291.3 (2)°) (Cremer & Pople, 1975) with endocyclic bond angles between 100.86 (13)° and 106.30 (15)° which are shorter respect the tetrahedrical normal bond angles.

The benzoate moieties differ in the relative orientations of the ethyl groups, Fig. 1, as quantified in the values of the C15—O2—C16—C17 and C25—O5—C26—C27 torsion angles of -86.5 (2) and -178.97 (17)°, respectively, which indicate different orientations with respect to the plane of benzoate moiety. The carbonyl groups are nearly coplanar with the benzene rings forming C10—C11—C15—O1 and C20—C21—C25—O4 torsion angles of 0.9 (3)° and 3.4 (3)° respectively. Bond angles around the carbonyl C atom deviate slightly from 120°. The C—C bond lengths between the atoms in the sequences C9, C10 and C12, C13, [1.385 (2) and 1.382 (2) Å] respectively are similar whereas the C10—C11 [1.400 (3) Å] and C11—C12 [1.392 (3) Å], bond lengths are slightly longer because of the influence of the polar CO group while the C9—C14 [1.359 (2) Å] is shorter and C13—C14 [1.392 (3) Å] is slightly longer because of the influence of the O—H hydrogen bonded groups.

In the crystal, adjacent molecules are connected via intermolecular C—H···O hydrogen bonds, forming an one-dimensional chain which propagates parallel with the c axis (Fig. 2) where one intermolecular hydrogen-bonding R22 (14) (Bernstein et al. 1995) graph-set motifs is generated (Fig 3).

Related literature top

For related structures, see: Rivera et al. (2010, 2011a,b). For the background to this work, see: Van den Enden & Geise (1981); Geise et al. (1971). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).

Experimental top

To a dioxane:water (7 ml) solution of the aminal (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) prepared previously following described procedures (Murray-Rust & Riddell, 1975), was added dropwise a dioxane solution (3 ml) containing two equivalents of ethyl p-hydroxybenzoate (332 mg, 2.00 mmol). The mixture was refluxed for about 10 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 18%, m.p. = 408–410 K). Single crystals of racemic (I) were grown from a chloroform: methanol solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

1H NMR (CDCl3, 400 MHz): δ 1.28 (4H, m), 1.35 (6H, t, 3JH,H = 7.2 Hz), 1.86 (2H, m), 2.07 (2H, m), 2.40 (2H, m), 3.56 (2H, d, 2JH,H = 13.9 Hz, ArCH2N), 3.56 (2H, s, NCH2N), 4.20 (2H, d, 2JH,H = 13.9 Hz, ArCH2N), 4.30 (4H, q, 3JH,H = 7.2 Hz), 6.83 (2H, d, 3JH,H = 8.5 Hz), 7.68 (2H, d, 4JH,H = 2.2 Hz), 7.87 (2H, dd, 3JH,H = 8.5 Hz, 4JH,H = 2.2 Hz). 13C NMR (CDCl3, 100 MHz): δ 14.4, 23.9, 28.9, 56.0, 60.6, 69.1, 75.6, 116.2, 121.0, 121.8, 130.0, 131.2, 161.8, 166.3.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded C atoms were kept in ideal positions with C–H distance 0.96 Å during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with displacement displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH– and CH2- groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along the a axis.
[Figure 3] Fig. 3. Dimer formation of the title compound by a R22(14) ring motif.
Diethyl 4,4'-dihydroxy-3,3'-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a- octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene)}dibenzoate top
Crystal data top
C27H34N2O6Z = 2
Mr = 482.6F(000) = 516
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 8.1132 (4) ÅCell parameters from 4486 reflections
b = 10.9796 (7) Åθ = 2.9–67.1°
c = 15.2450 (8) ŵ = 0.73 mm1
α = 89.580 (5)°T = 120 K
β = 81.028 (4)°Block, colourless
γ = 70.028 (5)°0.46 × 0.18 × 0.11 mm
V = 1259.19 (13) Å3
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
4430 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3313 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 2.9°
Rotation method data acquisition using ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1312
Tmin = 0.752, Tmax = 1l = 1818
11294 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0009I2]
wR(F2) = 0.111(Δ/σ)max = 0.005
S = 1.64Δρmax = 0.47 e Å3
4430 reflectionsΔρmin = 0.24 e Å3
323 parametersExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 900 (200)
130 constraints
Crystal data top
C27H34N2O6γ = 70.028 (5)°
Mr = 482.6V = 1259.19 (13) Å3
Triclinic, P1Z = 2
a = 8.1132 (4) ÅCu Kα radiation
b = 10.9796 (7) ŵ = 0.73 mm1
c = 15.2450 (8) ÅT = 120 K
α = 89.580 (5)°0.46 × 0.18 × 0.11 mm
β = 81.028 (4)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
4430 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3313 reflections with I > 3σ(I)
Tmin = 0.752, Tmax = 1Rint = 0.034
11294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.64Δρmax = 0.47 e Å3
4430 reflectionsΔρmin = 0.24 e Å3
323 parameters
Special details top

Experimental. CrysAlisPro (Agilent Technologies, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80490 (18)0.62458 (15)0.09060 (10)0.0383 (6)
O20.86246 (17)0.80304 (15)0.05677 (10)0.0363 (6)
O30.16819 (17)0.90030 (14)0.22196 (9)0.0305 (5)
O40.88617 (18)0.26784 (14)0.50761 (10)0.0336 (5)
O51.05002 (16)0.09728 (14)0.41510 (9)0.0289 (5)
O60.35533 (18)0.23291 (15)0.24830 (10)0.0327 (6)
N10.16240 (18)0.65935 (16)0.21904 (10)0.0230 (6)
N20.20550 (18)0.47944 (15)0.31013 (10)0.0223 (5)
C10.2970 (2)0.5617 (2)0.26184 (14)0.0301 (7)
C20.0010 (2)0.62702 (18)0.23985 (12)0.0215 (6)
C30.0186 (2)0.56664 (18)0.32802 (12)0.0212 (6)
C40.1214 (2)0.5040 (2)0.35509 (13)0.0251 (7)
C50.3031 (2)0.6115 (2)0.36049 (13)0.0284 (7)
C60.3246 (2)0.6841 (2)0.27465 (13)0.0289 (7)
C70.1753 (2)0.7398 (2)0.24635 (13)0.0263 (7)
C80.2195 (2)0.66840 (19)0.12354 (13)0.0247 (7)
C90.3493 (2)0.74075 (18)0.10787 (12)0.0220 (6)
C100.5003 (2)0.69903 (19)0.04363 (13)0.0237 (7)
C110.6112 (2)0.77285 (19)0.02585 (12)0.0237 (7)
C120.5683 (2)0.89060 (19)0.07296 (12)0.0243 (7)
C130.4197 (2)0.93306 (19)0.13820 (13)0.0252 (7)
C140.3118 (2)0.85782 (19)0.15638 (12)0.0235 (7)
C150.7677 (2)0.7236 (2)0.04577 (13)0.0281 (7)
C161.0021 (3)0.7736 (2)0.13485 (16)0.0406 (9)
C171.1722 (3)0.6775 (3)0.11692 (17)0.0510 (11)
C180.2807 (2)0.42669 (18)0.38978 (13)0.0234 (6)
C190.4584 (2)0.31872 (18)0.36541 (12)0.0216 (6)
C200.5969 (2)0.30589 (19)0.41223 (12)0.0226 (6)
C210.7585 (2)0.20349 (18)0.39261 (12)0.0223 (6)
C220.7816 (2)0.11224 (19)0.32436 (13)0.0248 (7)
C230.6454 (2)0.1236 (2)0.27718 (13)0.0275 (7)
C240.4850 (2)0.22611 (19)0.29689 (13)0.0239 (7)
C250.9003 (2)0.19539 (18)0.44524 (13)0.0233 (7)
C261.2010 (2)0.0805 (2)0.45986 (14)0.0289 (7)
C271.3504 (2)0.0335 (2)0.41217 (14)0.0335 (8)
H1a0.3909960.5094760.2170220.0361*
H1b0.3391670.604550.3033870.0361*
H20.0097210.5731150.1927560.0257*
H30.0021720.6241780.3788530.0255*
H4a0.1097050.4388540.3105720.0301*
H4b0.1090340.4686380.4124730.0301*
H5a0.3953710.5748810.3741160.034*
H5b0.3198890.6719050.4091180.034*
H6a0.3260410.6265260.2279010.0346*
H6b0.4375130.7532030.2825480.0346*
H7a0.1863380.7759930.1891460.0316*
H7b0.1801830.8028460.2909010.0316*
H8a0.1175250.7120730.0962220.0296*
H8b0.2741730.5827410.0958790.0296*
H100.5292840.6181780.0107540.0285*
H120.6423660.9425960.0600720.0292*
H130.3908891.0140690.1708410.0302*
H16a0.9636790.7407490.1831660.0488*
H16b1.0210280.8520320.1537320.0488*
H17a1.2621120.6653840.1683450.0765*
H17b1.2082070.7088560.0671320.0765*
H17c1.1560020.5963330.1036940.0765*
H18a0.1995410.3942520.4268760.0281*
H18b0.2953010.4947970.4234470.0281*
H200.5810290.3688160.4590720.0271*
H220.8922950.0415230.3102080.0298*
H230.661590.0603220.2305160.033*
H26a1.1725410.0609670.5206340.0347*
H26b1.2336980.1566810.4544380.0347*
H27a1.314690.1084410.4142480.0503*
H27b1.3785370.0141120.3513440.0503*
H27c1.4531650.0505790.4405050.0503*
H3o0.139 (3)0.829 (3)0.2311 (15)0.0366*
H6o0.280 (3)0.316 (3)0.2587 (16)0.0393*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0355 (8)0.0382 (9)0.0379 (9)0.0156 (7)0.0104 (6)0.0086 (7)
O20.0280 (7)0.0358 (9)0.0439 (9)0.0156 (6)0.0079 (6)0.0004 (7)
O30.0272 (7)0.0266 (8)0.0324 (8)0.0073 (6)0.0060 (6)0.0034 (6)
O40.0325 (8)0.0300 (8)0.0357 (8)0.0042 (6)0.0127 (6)0.0063 (7)
O50.0199 (7)0.0305 (8)0.0329 (8)0.0025 (6)0.0080 (5)0.0027 (6)
O60.0278 (7)0.0283 (8)0.0416 (9)0.0046 (6)0.0155 (6)0.0064 (7)
N10.0175 (7)0.0280 (9)0.0235 (8)0.0080 (6)0.0031 (6)0.0047 (7)
N20.0173 (7)0.0239 (9)0.0238 (8)0.0047 (6)0.0034 (6)0.0040 (7)
C10.0193 (9)0.0345 (12)0.0359 (12)0.0084 (8)0.0055 (8)0.0115 (9)
C20.0175 (9)0.0246 (10)0.0230 (10)0.0082 (7)0.0035 (7)0.0022 (8)
C30.0174 (9)0.0221 (10)0.0216 (9)0.0039 (7)0.0024 (7)0.0009 (8)
C40.0203 (9)0.0296 (11)0.0262 (10)0.0101 (8)0.0027 (7)0.0042 (8)
C50.0193 (9)0.0357 (12)0.0294 (11)0.0098 (8)0.0015 (8)0.0025 (9)
C60.0173 (9)0.0362 (12)0.0305 (11)0.0058 (8)0.0044 (8)0.0024 (9)
C70.0216 (9)0.0290 (11)0.0255 (10)0.0048 (8)0.0042 (8)0.0045 (8)
C80.0244 (9)0.0255 (10)0.0230 (10)0.0089 (8)0.0002 (7)0.0004 (8)
C90.0223 (9)0.0228 (10)0.0209 (9)0.0077 (7)0.0041 (7)0.0038 (8)
C100.0247 (9)0.0232 (10)0.0224 (10)0.0073 (8)0.0034 (7)0.0012 (8)
C110.0229 (9)0.0273 (10)0.0214 (10)0.0091 (8)0.0044 (7)0.0033 (8)
C120.0258 (10)0.0250 (10)0.0250 (10)0.0108 (8)0.0081 (8)0.0068 (8)
C130.0284 (10)0.0218 (10)0.0253 (10)0.0075 (8)0.0073 (8)0.0015 (8)
C140.0217 (9)0.0226 (10)0.0222 (10)0.0032 (7)0.0021 (7)0.0026 (8)
C150.0262 (10)0.0305 (11)0.0283 (11)0.0117 (8)0.0022 (8)0.0041 (9)
C160.0318 (11)0.0473 (14)0.0405 (13)0.0171 (10)0.0093 (9)0.0016 (11)
C170.0365 (13)0.0683 (19)0.0445 (15)0.0167 (12)0.0008 (11)0.0037 (13)
C180.0220 (9)0.0233 (10)0.0226 (10)0.0051 (7)0.0032 (7)0.0020 (8)
C190.0211 (9)0.0209 (10)0.0222 (9)0.0066 (7)0.0027 (7)0.0030 (8)
C200.0239 (9)0.0214 (10)0.0209 (9)0.0071 (7)0.0010 (7)0.0000 (8)
C210.0219 (9)0.0218 (10)0.0226 (10)0.0075 (7)0.0018 (7)0.0038 (8)
C220.0208 (9)0.0226 (10)0.0275 (10)0.0039 (8)0.0017 (8)0.0013 (8)
C230.0273 (10)0.0247 (11)0.0288 (11)0.0070 (8)0.0038 (8)0.0049 (8)
C240.0219 (9)0.0234 (10)0.0279 (10)0.0089 (8)0.0064 (8)0.0010 (8)
C250.0229 (9)0.0207 (10)0.0256 (10)0.0069 (8)0.0037 (8)0.0032 (8)
C260.0235 (10)0.0298 (11)0.0353 (11)0.0081 (8)0.0130 (8)0.0056 (9)
C270.0217 (10)0.0369 (12)0.0396 (12)0.0064 (8)0.0067 (9)0.0036 (10)
Geometric parameters (Å, º) top
O1—C151.209 (3)C8—H8b0.96
O2—C151.340 (3)C9—C101.385 (2)
O2—C161.463 (3)C9—C141.403 (3)
O3—C141.359 (2)C10—C111.400 (3)
O3—H3o0.89 (3)C10—H100.96
O4—C251.210 (3)C11—C121.392 (3)
O5—C251.3364 (19)C11—C151.485 (2)
O5—C261.451 (3)C12—C131.382 (2)
O6—C241.360 (3)C12—H120.96
O6—H6o0.91 (2)C13—C141.393 (3)
N1—C11.476 (2)C13—H130.96
N1—C21.474 (3)C16—C171.487 (3)
N1—C81.471 (2)C16—H16a0.96
N2—C11.479 (3)C16—H16b0.96
N2—C31.474 (2)C17—H17a0.96
N2—C181.470 (2)C17—H17b0.96
C1—H1a0.96C17—H17c0.96
C1—H1b0.96C18—C191.514 (2)
C2—C31.501 (3)C18—H18a0.96
C2—C71.518 (2)C18—H18b0.96
C2—H20.96C19—C201.390 (3)
C3—C41.522 (3)C19—C241.402 (3)
C3—H30.96C20—C211.396 (2)
C4—C51.533 (2)C20—H200.96
C4—H4a0.96C21—C221.396 (3)
C4—H4b0.96C21—C251.481 (3)
C5—C61.529 (3)C22—C231.380 (3)
C5—H5a0.96C22—H220.96
C5—H5b0.96C23—C241.391 (2)
C6—C71.539 (3)C23—H230.96
C6—H6a0.96C26—C271.505 (2)
C6—H6b0.96C26—H26a0.96
C7—H7a0.96C26—H26b0.96
C7—H7b0.96C27—H27a0.96
C8—C91.512 (3)C27—H27b0.96
C8—H8a0.96C27—H27c0.96
C15—O2—C16116.06 (17)C10—C11—C15117.93 (18)
C14—O3—H3o102.3 (13)C12—C11—C15122.6 (2)
C25—O5—C26117.08 (16)C11—C12—C13120.4 (2)
C24—O6—H6o103.4 (18)C11—C12—H12119.8207
C1—N1—C2105.79 (16)C13—C12—H12119.8195
C1—N1—C8113.67 (13)C12—C13—C14119.71 (19)
C2—N1—C8114.09 (16)C12—C13—H13120.1478
C1—N2—C3102.83 (14)C14—C13—H13120.1472
C1—N2—C18112.75 (16)O3—C14—C9120.36 (19)
C3—N2—C18114.62 (13)O3—C14—C13118.70 (18)
N1—C1—N2106.30 (15)C9—C14—C13120.94 (16)
N1—C1—H1a109.4712O1—C15—O2123.33 (17)
N1—C1—H1b109.4709O1—C15—C11124.4 (2)
N2—C1—H1a109.4716O2—C15—C11112.25 (18)
N2—C1—H1b109.4715O2—C16—C17112.13 (19)
H1a—C1—H1b112.4688O2—C16—H16a109.4709
N1—C2—C3101.91 (15)O2—C16—H16b109.4712
N1—C2—C7116.25 (17)C17—C16—H16a109.4713
N1—C2—H2110.6306C17—C16—H16b109.4715
C3—C2—C7110.74 (14)H16a—C16—H16b106.6803
C3—C2—H2116.1453C16—C17—H17a109.4706
C7—C2—H2101.7775C16—C17—H17b109.471
N2—C3—C2100.86 (13)C16—C17—H17c109.4713
N2—C3—C4116.93 (16)H17a—C17—H17b109.4711
N2—C3—H3110.9593H17a—C17—H17c109.4713
C2—C3—C4110.85 (17)H17b—C17—H17c109.4722
C2—C3—H3117.026N2—C18—C19111.38 (14)
C4—C3—H3100.9923N2—C18—H18a109.4715
C3—C4—C5106.90 (17)N2—C18—H18b109.4713
C3—C4—H4a109.4713C19—C18—H18a109.4707
C3—C4—H4b109.4714C19—C18—H18b109.4714
C5—C4—H4a109.4711H18a—C18—H18b107.4978
C5—C4—H4b109.471C18—C19—C20121.07 (17)
H4a—C4—H4b111.9296C18—C19—C24120.63 (17)
C4—C5—C6112.75 (15)C20—C19—C24118.26 (15)
C4—C5—H5a109.4716C19—C20—C21121.41 (18)
C4—C5—H5b109.4711C19—C20—H20119.2941
C6—C5—H5a109.4709C21—C20—H20119.2942
C6—C5—H5b109.4716C20—C21—C22119.27 (18)
H5a—C5—H5b105.9755C20—C21—C25118.64 (17)
C5—C6—C7112.22 (17)C22—C21—C25122.08 (15)
C5—C6—H6a109.4716C21—C22—C23120.05 (15)
C5—C6—H6b109.4709C21—C22—H22119.9737
C7—C6—H6a109.4709C23—C22—H22119.9726
C7—C6—H6b109.4708C22—C23—C24120.36 (19)
H6a—C6—H6b106.5811C22—C23—H23119.8209
C2—C7—C6106.70 (17)C24—C23—H23119.8211
C2—C7—H7a109.4713O6—C24—C19121.35 (14)
C2—C7—H7b109.4711O6—C24—C23118.01 (18)
C6—C7—H7a109.4719C19—C24—C23120.64 (19)
C6—C7—H7b109.4712O4—C25—O5123.08 (18)
H7a—C7—H7b112.1028O4—C25—C21125.33 (15)
N1—C8—C9111.39 (17)O5—C25—C21111.58 (16)
N1—C8—H8a109.4707O5—C26—C27106.08 (17)
N1—C8—H8b109.4706O5—C26—H26a109.4715
C9—C8—H8a109.4718O5—C26—H26b109.4715
C9—C8—H8b109.4714C27—C26—H26a109.4715
H8a—C8—H8b107.4817C27—C26—H26b109.4709
C8—C9—C10122.19 (18)H26a—C26—H26b112.6645
C8—C9—C14119.30 (15)C26—C27—H27a109.4704
C10—C9—C14118.4 (2)C26—C27—H27b109.4712
C9—C10—C11121.07 (19)C26—C27—H27c109.4714
C9—C10—H10119.4657H27a—C27—H27b109.4716
C11—C10—H10119.4663H27a—C27—H27c109.4708
C10—C11—C12119.46 (16)H27b—C27—H27c109.4719
N1—C2—C3—N245.57 (16)C20—C21—C25—O43.4 (3)
C7—C2—C3—C465.6 (2)C15—O2—C16—C1786.5 (2)
C10—C11—C15—O10.9 (3)C25—O5—C26—C27178.97 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···N10.89 (3)1.82 (3)2.663 (2)156.9 (19)
O6—H6o···N20.91 (2)1.82 (3)2.669 (2)154 (3)
C2—H2···O1i0.962.583.362 (2)138
C3—H3···O4ii0.962.573.436 (2)151
C8—H8b···O1i0.962.573.336 (2)137
C22—H22···O3iii0.962.443.351 (2)159
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC27H34N2O6
Mr482.6
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.1132 (4), 10.9796 (7), 15.2450 (8)
α, β, γ (°)89.580 (5), 81.028 (4), 70.028 (5)
V3)1259.19 (13)
Z2
Radiation typeCu Kα
µ (mm1)0.73
Crystal size (mm)0.46 × 0.18 × 0.11
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.752, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
11294, 4430, 3313
Rint0.034
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.64
No. of reflections4430
No. of parameters323
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.24

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···N10.89 (3)1.82 (3)2.663 (2)156.9 (19)
O6—H6o···N20.91 (2)1.82 (3)2.669 (2)154 (3)
C2—H2···O1i0.962.583.362 (2)138
C3—H3···O4ii0.962.573.436 (2)151
C8—H8b···O1i0.962.573.336 (2)137
C22—H22···O3iii0.962.443.351 (2)159
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y1, z.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGeise, H. J., Buys, H. R. & Mijlhoff, F. C. (1971). J. Mol. Struct. 9, 447–454.  CrossRef CAS Web of Science Google Scholar
First citationMurray-Rust, P. & Riddell, F. G. (1975). Can. J. Chem. 53, 1933–1935.  CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o931.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011a). Acta Cryst. E67, o2627–o2628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011b). Acta Cryst. E67, o2297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVan den Enden, L. & Geise, H. J. (1981). J. Mol. Struct. 74, 309–320.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2817-o2818
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds