metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(E)-4,4′-(ethane-1,2-di­yl)dipyridinium [[bis­­(thio­cyanato-κN)ferrate(II)]-di-μ-thio­cyanato-κ2N:S;κ2S:N]]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: swoehlert@ac.uni-kiel.de

(Received 27 September 2011; accepted 28 September 2011; online 8 October 2011)

In the crystal structure of the title compound, {(C12H14N2)[Fe(NCS)4]}n, the iron(II) cation is coordinated by four N-bonded and two S-bonded thio­cyanate anions in a distorted octa­hedral coordination mode. The asymmetric unit consists of half an iron(II) cation and half a protonated (E)-4,4′-(ethane-1,2-di­yl)dipyridinium dication, each located on a centre of inversion. In addition, there are two thio­cyanate anions in general positions. The crystal structure consists of Fe—(NCS)2—Fe chains in which each iron(II) cation is additionally coordinated by two terminal N-bonded thio­cyanate anions. Non-coordinating dipyridinium dications are present between the thiocyanatoferrate(II) chains and are connected to the anions via N—H⋯N and N—H⋯S hydrogen-bond interactions.

Related literature

For coordination polymers based on transition metal thio- and seleno­cyanates, see: Wöhlert et al. (2011[Wöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.]); Boeckmann et al. (2010[Boeckmann, J., Wriedt, M. & Näther, C. (2010). Eur. J. Inorg. Chem. 12, 1820-1828.]). For a similar structure, see: Wöhlert et al. (2010[Wöhlert, S., Wriedt, M., Jess, I. & Näther, C. (2010). Acta Cryst. E66, m1256.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H14N2)[Fe(NCS)4]

  • Mr = 474.42

  • Triclinic, [P \overline 1]

  • a = 5.6818 (3) Å

  • b = 9.0957 (6) Å

  • c = 10.9259 (7) Å

  • α = 105.586 (5)°

  • β = 103.633 (5)°

  • γ = 101.383 (5)°

  • V = 507.65 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.19 × 0.15 × 0.09 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.806, Tmax = 0.899

  • 7638 measured reflections

  • 2101 independent reflections

  • 1838 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.063

  • S = 1.03

  • 2101 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 2.1011 (15)
Fe1—N2 2.1376 (14)
Fe1—S2i 2.6729 (5)
N1ii—Fe1—N1 180
N1ii—Fe1—N2 88.06 (6)
N1—Fe1—N2 91.94 (6)
N2ii—Fe1—S2iii 86.73 (4)
N1—Fe1—S2i 86.79 (4)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10A⋯N1 0.86 2.34 3.029 (2) 137
N10—H10A⋯S2i 0.86 2.73 3.4369 (15) 141
Symmetry code: (i) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; cell refinement: X-AREA[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; data reduction: X-AREA[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

In our current work, we are interested in the structure and properties of new coordination polymers based on transition metal thio- and selenocyanates (Wöhlert et al., 2011; Boeckmann, Wriedt & Näther, 2010). In our ongoing investigation in this field we have reacted iron(II) sulfate heptahydrate, potassium thiocyanate and E-1,2-bis(4-pyridyl)-ethane in water. In this reaction red single crystals of the title compound were obtained, which were identified by single crystal X-ray diffraction.

The title compound of composition [Fe(NCS)4]n-E-1,2-bis(4-pyridinium)-ethane (Fig. 1) represents an 1-D coordination polymer, in which each iron(II) cation is connected by four µ-1,3 bridging thiocyanato anions into chains that elongate in the direction of the crystallographic a axis (Fig. 2). Between these chains noncoordinating protonated E-1,2-bis(4-pyridinium)-ethane ligands are found, that are linked to the anions by weak hydrogen bonding interactions (Table 1). The FeN4S2 octahedron is slightly distorted with two long Fe—SCN distances of 2.6729 (5) Å and short Fe—NCS distances of 2.1011 (15) and 2.1376 (14)Å. The angles arround the metal cations range from 86.73 (5) to 93.27 (4) and 180° (Tab. 1). The shortest intramolecular Fe···Fe distance amounts to 5.6818 (3) Å and the shortest intermolecular Fe···Fe distance amounts to 9.0957 (6) Å. It must be noted that the structure is very similar but not isotypic to that of iron(II) thiocyanate and E-1,2-bis(4-pyridinium)-ethylene reported recently (Wöhlert et al., 2010).

Related literature top

For coordination polymers based on transition metal thio- and selenocyanates, see: Wöhlert et al. (2011); Boeckmann et al. (2010). For a similar compound, see: Wöhlert et al. (2010).

Experimental top

FeSO4.7H2O and 1,2-bis(4-pyridyl)-ethane were obtained from Sigma Aldrich. KNCS are obtained from Alfa Aesar. 0.6 mmol (168.0 mg) FeSO4.7H2O, 1.2 mmol (117.7 mg) KNCS and 0.15 mmol (27.2 mg) 1,2-bis(4-pyridyl)-ethane were reacted with 1 mL H2O in closed test-tube at 120°C for three days. On cooling red block-shaped single crystals of the title compound were obtained in a mixture with a second crystalline phase that was not yet identified.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined using a riding model with Ueq(H) = 1.2 Ueq(C,N) with C—H = 0.93 Å and N—H = 0.86 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry code: i = -x + 1, -y + 1, -z + 1; ii = -x, -y +1, -z +1; iii = x+1, y, z; iv = -x, -y +2, -z.
[Figure 2] Fig. 2. : Crystal structure of the title compound viewed along the crystallographic b axis.
catena-Poly[(E)-4,4'-(ethane-1,2-diyl)dipyridinium [[bis(thiocyanato-κN)ferrate(II)]-di-µ-thiocyanato- κ2N:S;κ2S:N]] top
Crystal data top
(C12H14N2)[Fe(NCS)4]Z = 1
Mr = 474.42F(000) = 242
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6818 (3) ÅCell parameters from 7638 reflections
b = 9.0957 (6) Åθ = 2.0–26.5°
c = 10.9259 (7) ŵ = 1.17 mm1
α = 105.586 (5)°T = 293 K
β = 103.633 (5)°Block, red
γ = 101.383 (5)°0.19 × 0.15 × 0.09 mm
V = 507.65 (5) Å3
Data collection top
Stoe IPDS-2
diffractometer
2101 independent reflections
Radiation source: fine-focus sealed tube1838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 76
Tmin = 0.806, Tmax = 0.899k = 1111
7638 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.0464P]
where P = (Fo2 + 2Fc2)/3
2101 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
(C12H14N2)[Fe(NCS)4]γ = 101.383 (5)°
Mr = 474.42V = 507.65 (5) Å3
Triclinic, P1Z = 1
a = 5.6818 (3) ÅMo Kα radiation
b = 9.0957 (6) ŵ = 1.17 mm1
c = 10.9259 (7) ÅT = 293 K
α = 105.586 (5)°0.19 × 0.15 × 0.09 mm
β = 103.633 (5)°
Data collection top
Stoe IPDS-2
diffractometer
2101 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
1838 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.899Rint = 0.030
7638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
2101 reflectionsΔρmin = 0.40 e Å3
124 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.50000.02833 (10)
N10.4723 (3)0.45516 (18)0.29744 (15)0.0398 (3)
C10.5464 (3)0.40682 (18)0.20845 (16)0.0311 (3)
S10.64953 (10)0.33771 (7)0.08533 (5)0.04980 (14)
N20.2339 (3)0.63622 (17)0.48892 (15)0.0356 (3)
C20.0753 (3)0.69028 (18)0.51257 (15)0.0283 (3)
S20.14718 (8)0.76903 (5)0.54918 (5)0.03592 (12)
N100.4056 (3)0.77059 (17)0.27628 (15)0.0384 (3)
H10A0.48910.72000.31780.046*
C100.5213 (3)0.9178 (2)0.28629 (19)0.0413 (4)
H100.68940.96420.33740.050*
C110.3919 (4)1.0005 (2)0.22104 (18)0.0399 (4)
H110.47241.10290.22730.048*
C120.1399 (3)0.9314 (2)0.14537 (16)0.0333 (4)
C130.0289 (3)0.7782 (2)0.13838 (18)0.0390 (4)
H130.13930.72890.08860.047*
C140.1652 (4)0.6990 (2)0.20418 (19)0.0410 (4)
H140.09050.59580.19860.049*
C150.0056 (4)1.0190 (2)0.07142 (17)0.0416 (4)
H15A0.06371.13240.11770.050*
H15B0.18000.98960.07010.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02747 (17)0.03565 (18)0.03103 (17)0.01680 (13)0.01363 (13)0.01564 (13)
N10.0459 (9)0.0434 (8)0.0355 (8)0.0179 (7)0.0150 (7)0.0153 (6)
C10.0323 (8)0.0272 (7)0.0324 (8)0.0078 (6)0.0059 (7)0.0116 (6)
S10.0492 (3)0.0540 (3)0.0424 (3)0.0118 (2)0.0221 (2)0.0048 (2)
N20.0292 (7)0.0391 (7)0.0465 (8)0.0149 (6)0.0158 (6)0.0192 (6)
C20.0246 (7)0.0288 (7)0.0327 (8)0.0073 (6)0.0078 (6)0.0130 (6)
S20.0281 (2)0.0341 (2)0.0472 (2)0.01455 (16)0.01351 (18)0.01003 (18)
N100.0410 (8)0.0391 (8)0.0416 (8)0.0172 (6)0.0088 (7)0.0226 (6)
C100.0339 (9)0.0418 (9)0.0442 (10)0.0083 (7)0.0028 (8)0.0173 (8)
C110.0460 (10)0.0306 (8)0.0422 (9)0.0093 (7)0.0082 (8)0.0161 (7)
C120.0414 (9)0.0376 (8)0.0270 (7)0.0192 (7)0.0115 (7)0.0135 (7)
C130.0336 (9)0.0424 (9)0.0391 (9)0.0082 (7)0.0061 (7)0.0165 (8)
C140.0449 (10)0.0343 (9)0.0450 (10)0.0072 (7)0.0115 (8)0.0198 (8)
C150.0517 (11)0.0469 (10)0.0369 (9)0.0292 (9)0.0128 (8)0.0204 (8)
Geometric parameters (Å, º) top
Fe1—N1i2.1011 (15)N10—H10A0.8600
Fe1—N12.1011 (15)C10—C111.369 (2)
Fe1—N2i2.1376 (14)C10—H100.9300
Fe1—N22.1376 (14)C11—C121.391 (3)
Fe1—S2ii2.6729 (5)C11—H110.9300
Fe1—S2iii2.6729 (5)C12—C131.385 (2)
N1—C11.163 (2)C12—C151.504 (2)
C1—S11.6157 (18)C13—C141.368 (3)
N2—C21.156 (2)C13—H130.9300
C2—S21.6472 (16)C14—H140.9300
S2—Fe1iv2.6729 (5)C15—C15v1.525 (4)
N10—C141.333 (2)C15—H15A0.9700
N10—C101.333 (2)C15—H15B0.9700
N1i—Fe1—N1180.000 (1)C10—N10—H10A118.8
N1i—Fe1—N2i91.94 (6)N10—C10—C11119.77 (16)
N1—Fe1—N2i88.06 (6)N10—C10—H10120.1
N1i—Fe1—N288.06 (6)C11—C10—H10120.1
N1—Fe1—N291.94 (6)C10—C11—C12120.07 (16)
N2i—Fe1—N2180.000 (1)C10—C11—H11120.0
N1i—Fe1—S2ii86.79 (4)C12—C11—H11120.0
N1—Fe1—S2ii93.21 (4)C13—C12—C11117.78 (15)
N2i—Fe1—S2ii86.73 (4)C13—C12—C15121.12 (16)
N2—Fe1—S2ii93.27 (4)C11—C12—C15121.09 (16)
N1i—Fe1—S2iii93.21 (4)C14—C13—C12120.42 (16)
N1—Fe1—S2iii86.79 (4)C14—C13—H13119.8
N2i—Fe1—S2iii93.27 (4)C12—C13—H13119.8
N2—Fe1—S2iii86.73 (4)N10—C14—C13119.63 (16)
S2ii—Fe1—S2iii180.000 (13)N10—C14—H14120.2
C1—N1—Fe1149.29 (13)C13—C14—H14120.2
N1—C1—S1179.28 (15)C12—C15—C15v111.35 (18)
C2—N2—Fe1158.76 (13)C12—C15—H15A109.4
N2—C2—S2178.92 (16)C15v—C15—H15A109.4
C2—S2—Fe1iv98.29 (6)C12—C15—H15B109.4
C14—N10—C10122.34 (15)C15v—C15—H15B109.4
C14—N10—H10A118.8H15A—C15—H15B108.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···N10.862.343.029 (2)137
N10—H10A···S2iii0.862.733.4369 (15)141
Symmetry code: (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C12H14N2)[Fe(NCS)4]
Mr474.42
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.6818 (3), 9.0957 (6), 10.9259 (7)
α, β, γ (°)105.586 (5), 103.633 (5), 101.383 (5)
V3)507.65 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.19 × 0.15 × 0.09
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.806, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
7638, 2101, 1838
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.03
No. of reflections2101
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.40

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), XCIF in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—N12.1011 (15)Fe1—S2i2.6729 (5)
Fe1—N22.1376 (14)
N1ii—Fe1—N1180.000 (1)N2ii—Fe1—S2iii86.73 (4)
N1ii—Fe1—N288.06 (6)N1—Fe1—S2i86.79 (4)
N1—Fe1—N291.94 (6)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···N10.862.343.029 (2)137.4
N10—H10A···S2i0.862.733.4369 (15)141.0
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facility.

References

First citationBoeckmann, J., Wriedt, M. & Näther, C. (2010). Eur. J. Inorg. Chem. 12, 1820–1828.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920–6923.  Google Scholar
First citationWöhlert, S., Wriedt, M., Jess, I. & Näther, C. (2010). Acta Cryst. E66, m1256.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds