organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2911-o2912

Di­methyl 4,4′-dihy­dr­oxy-3,3′-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl]bis­­(methyl­ene)}dibenzoate

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad, Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 28 September 2011; accepted 4 October 2011; online 12 October 2011)

The title compound, C25H30N2O6, has the imidazolidine ring in an envelope conformation. There are two intra­molecular O—H⋯N hydrogen-bond inter­actions with graph-set motif S(6). The cyclo­hexane ring adopts a slightly distorted chair conformation. One methyl carboxyl­ate substituent forms a dihedral angle of 12.00 (5)° with the plane of the benzene ring, while the other methyl carboxyl­ate group is almost coplanar, making a dihedral angle of 2.26 (9)°. In the crystal, pairs of inter­molecular C—H⋯O hydrogen bonds form racemic dimers, corresponding to an R22(18) graph-set motif. Further weak C—H⋯O inter­actions generate a chain running along the c axis.

Related literature

For related structures, see: Rivera et al. (2011a[Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011a). Acta Cryst. E67, o2627-o2628.],b[Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011b). Acta Cryst. E67, o2297.],c[Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011c). Acta Cryst. E67, o2817-o2818.]). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975[Murray-Rust, P. & Riddell, F. G. (1975). Can. J. Chem. 53, 1933-1935.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H30N2O6

  • Mr = 454.5

  • Monoclinic, C 2/c

  • a = 26.3472 (6) Å

  • b = 9.1432 (1) Å

  • c = 21.6585 (4) Å

  • β = 121.139 (3)°

  • V = 4465.7 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 120 K

  • 0.41 × 0.23 × 0.16 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.853, Tmax = 1

  • 17421 measured reflections

  • 3970 independent reflections

  • 3309 reflections with I > 3σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.54

  • 3970 reflections

  • 304 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.90 (2) 1.80 (2) 2.6383 (18) 154.3 (16)
O6—H6⋯N2 0.87 (2) 1.88 (2) 2.6814 (18) 153.0 (18)
C2—H2⋯O1i 0.96 2.57 3.414 (2) 146
C4—H4b⋯O1i 0.96 2.58 3.353 (2) 137
C16—H16c⋯O6ii 0.96 2.59 3.350 (2) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The synthesis of the title compound (I) represents an expansion of our previous work exploring the substituent effects on the solid state structures of di-Mannich bases (Rivera et al., 2011a,b,c). In the title compound (I), C25H30N2O6, the heterocyclc ring has a envelope conformation on C7 (Q(2) = 0.4439 (15) Å, ϕ = 296.59 (19)°). It is surprising, however, that of the 12 fused 1,3-disubstituted-(3aR,7aR/3aS,7aS)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole of this type studied to date by us, including the title compound, only two has an envelope conformation on aminalic carbon (NCH2N); the other all have a twisted conformation on C—C bond joint to both rings. The molecular conformation is stabilized by two intramolecular O—H···N hydrogen-bond interaction with set graph motif S(6) (Bernstein, et al. 1995). The cyclohexane ring adopt a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.5834 (16) Å, 5.35 (16)°, 300.8 (17)°. In the molecule of the title compound (Fig. 1), bond lengths and angles are generally within normal ranges and comparable with those observed in related compounds (Rivera et al., 2011a,b,c). Whereas the first carbonyl group is coplanar with the phenyl ring [torsion angle C10—C11—C15—O1 of 1.3 (2)°], the second carbonyl group is slightly twisted out of the plane of the aromatic ring. The torsion angle C19—C20—C24—O4 amounts to -10.1 (2)°. Therefore, the differences in orientation likely arise as a result of steric considerations with respect to the crystal packing.

The crystal packing is dominated by non-conventional C—H···O hydrogen bond interactions, Table 1. In the racemic crystal of title compound, a pair of the enantiomers are bonded together with two intermolecular bifurcate hydrogen bonds (Figure 2), generating a R22(18) graph-set motifs (Bernstein, et al. 1995). So, O1 can form two bifurcate intermolecular hydrogen bonds with two hydrogen atoms, C2—H2···O1 [C···O = 3.414 (2) Å] and C4—H4b···O1 [C···O = 3.353 (2) Å], but the two hydrogen atoms are in the same molecule, which indicates that one molecule in the crystals can be connected with one neighboring molecule by two intermolecular C—H···O bifurcate hydrogen bonds. The racemic dimers are further connected by additional C16—H16c···O6 hydrogen bonds, forming a supramolecular chain along the c axis (Figure 3). Thus, the ability of O6—H6 hydroxyl group to act as a hydrogen bridge donor and acceptor is important for the formation of crystals packing of the title compound. However, this additional H-bonding does not influence the intramolecular O—H···N distance, which shows a typical O···N distances of 2.6814 (18) Å (Rivera et al., 2011a,b,c).

Related literature top

For related structures, see: Rivera et al. (2011a,b,c). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).

Experimental top

A solution of methyl 4-hydroxybenzoate (304 mg, 2.00 mmol) in dioxane (3 ml) was added dropwise to (2R,7R,11S,16S)-1,8,10,17- tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) in dioxane (3 ml) and water (4 ml), prepared following previously described procedures (Murray-Rust & Riddell, 1975). The mixture was refluxed for about 10 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 20%, m.p. = 449–450 K). Single crystals of racemic (I) were grown from a chloroform: methanol solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

1H NMR (CDCl3, 400 MHz): δ 1.30 (4H, m), 1.86 (2H, m), 2.06 (2H, m), 2.38 (2H, m), 3.53 (2H, s, NCH2N), 3.54 (2H, d, 2JH,H = 14.0 Hz, ArCH2N), 4.20 (2H, d, 2JH,H = 14.0 Hz, ArCH2N), 3.84 (6H, s, CH3), 6.83 (2H, d, 3JH,H = 8.4 Hz), 7.68 (2H, s), 7.86 (2H, dd, 4JH,H = 1.6 Hz, 3JH,H = 8.4 Hz). 13C NMR (CDCl3, 100 MHz): δ 23.9, 28.8, 51.8, 56.0, 69.1, 75.6, 116.2, 121.0, 121.3, 130.0, 131.2, 161.9, 166.8.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded to C atoms were kept in ideal positions with C–H distance 0.96 Å during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH– and CH2– groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Dimer formation of the title compound by a R22(18) ring motif.
[Figure 3] Fig. 3. Packing of the molecules of the title compound view along the c axis.
Dimethyl 4,4'-dihydroxy-3,3'-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octahydro- 1H-1,3-benzimidazole-1,3-diyl]bis(methylene)}dibenzoate top
Crystal data top
C25H30N2O6F(000) = 1936
Mr = 454.5Dx = 1.352 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -C 2ycCell parameters from 9151 reflections
a = 26.3472 (6) Åθ = 3.4–67.1°
b = 9.1432 (1) ŵ = 0.80 mm1
c = 21.6585 (4) ÅT = 120 K
β = 121.139 (3)°Block, colourless
V = 4465.7 (2) Å30.41 × 0.23 × 0.16 mm
Z = 8
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3970 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3309 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.9°
Rotation method data acquisition using ω scansh = 3130
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1010
Tmin = 0.853, Tmax = 1l = 2425
17421 measured reflections
Refinement top
Refinement on F20 constraints
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.54(Δ/σ)max = 0.045
3970 reflectionsΔρmax = 0.26 e Å3
304 parametersΔρmin = 0.18 e Å3
0 restraints
Crystal data top
C25H30N2O6V = 4465.7 (2) Å3
Mr = 454.5Z = 8
Monoclinic, C2/cCu Kα radiation
a = 26.3472 (6) ŵ = 0.80 mm1
b = 9.1432 (1) ÅT = 120 K
c = 21.6585 (4) Å0.41 × 0.23 × 0.16 mm
β = 121.139 (3)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3970 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3309 reflections with I > 3σ(I)
Tmin = 0.853, Tmax = 1Rint = 0.028
17421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.54Δρmax = 0.26 e Å3
3970 reflectionsΔρmin = 0.18 e Å3
304 parameters
Special details top

Experimental. CrysAlisPro (Agilent Technologies, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25904 (4)0.33029 (11)1.07162 (5)0.0309 (4)
O20.18467 (4)0.18439 (10)1.05612 (5)0.0305 (4)
O30.03275 (4)0.68882 (11)0.84111 (5)0.0269 (4)
O40.01966 (4)0.25644 (10)0.51016 (5)0.0275 (4)
O50.10151 (4)0.15258 (9)0.52210 (5)0.0246 (4)
O60.22213 (4)0.68869 (11)0.72919 (5)0.0281 (4)
N10.11660 (5)0.80792 (11)0.82539 (6)0.0206 (4)
N20.12619 (5)0.80593 (11)0.72269 (6)0.0203 (4)
C10.12226 (6)0.70921 (14)0.77488 (7)0.0229 (5)
C20.12528 (6)0.95764 (13)0.80739 (7)0.0200 (5)
C30.09573 (6)1.07952 (14)0.82484 (7)0.0244 (6)
C40.10153 (7)1.22240 (15)0.79175 (8)0.0282 (6)
C50.07990 (6)1.20809 (15)0.71143 (8)0.0283 (6)
C60.10988 (6)1.08124 (14)0.69607 (7)0.0252 (6)
C70.09940 (6)0.94404 (13)0.72716 (7)0.0203 (5)
C80.15534 (6)0.76766 (14)0.90155 (7)0.0221 (5)
C90.13584 (6)0.62646 (14)0.91905 (6)0.0201 (5)
C100.17667 (6)0.52797 (14)0.96778 (7)0.0209 (5)
C110.15941 (6)0.40115 (14)0.98767 (7)0.0217 (5)
C120.09912 (6)0.37225 (14)0.95701 (7)0.0232 (6)
C130.05745 (6)0.46807 (14)0.90719 (7)0.0234 (6)
C140.07510 (6)0.59530 (14)0.88841 (7)0.0208 (5)
C150.20657 (6)0.30532 (14)1.04216 (7)0.0238 (6)
C160.22831 (7)0.08821 (16)1.11053 (9)0.0354 (7)
C170.09522 (6)0.74531 (14)0.64881 (7)0.0223 (5)
C180.12328 (5)0.60631 (14)0.64261 (7)0.0196 (5)
C190.08850 (6)0.49718 (13)0.59512 (7)0.0193 (5)
C200.11324 (6)0.37195 (13)0.58482 (7)0.0202 (5)
C210.17476 (6)0.35599 (14)0.62305 (7)0.0227 (5)
C220.21021 (6)0.46283 (14)0.67116 (7)0.0243 (5)
C230.18496 (6)0.58707 (14)0.68127 (7)0.0216 (5)
C240.07276 (6)0.25842 (14)0.53542 (7)0.0209 (5)
C250.06444 (6)0.03656 (14)0.47537 (8)0.0280 (6)
H1a0.0874470.6492310.7498280.0275*
H1b0.1580790.6531250.8010010.0275*
H20.1661220.9866130.8356720.024*
H3a0.1149631.09030.8762150.0293*
H3b0.054531.056830.8046440.0293*
H4a0.0796811.29840.7984360.0338*
H4b0.1421661.2537280.8174840.0338*
H5a0.0377111.1941440.6846060.034*
H5b0.0873071.2978280.6944080.034*
H6a0.0921561.0700660.6449020.0302*
H6b0.1517031.099540.7194430.0302*
H70.0569970.9381340.6974210.0244*
H8a0.1550720.8445110.9315810.0265*
H8b0.1953710.7578040.9122490.0265*
H100.2181840.5475190.9885540.0251*
H120.086520.2857320.9704990.0278*
H130.015990.446520.8854110.0281*
H16a0.208870.0042241.1155550.0531*
H16b0.2557370.0572841.0964980.0531*
H16c0.2493660.1391591.1557390.0531*
H17a0.0944720.8171160.6160090.0268*
H17b0.0544770.7270070.6334330.0268*
H190.0461720.5082560.5685870.0232*
H210.1924270.2708040.6159180.0272*
H220.252520.4512480.6977630.0291*
H25a0.0881440.0304550.4667310.0421*
H25b0.0463880.0143330.497930.0421*
H25c0.0341080.0772640.4303690.0421*
H30.0529 (8)0.750 (2)0.8286 (10)0.0404*
H60.1986 (8)0.751 (2)0.7320 (10)0.0422*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0282 (5)0.0290 (5)0.0291 (5)0.0015 (4)0.0104 (4)0.0040 (4)
O20.0339 (5)0.0213 (5)0.0341 (5)0.0023 (4)0.0159 (5)0.0076 (4)
O30.0212 (5)0.0296 (5)0.0295 (5)0.0038 (4)0.0127 (4)0.0069 (4)
O40.0223 (5)0.0260 (5)0.0278 (5)0.0000 (4)0.0085 (4)0.0035 (4)
O50.0274 (5)0.0199 (5)0.0270 (5)0.0007 (4)0.0145 (4)0.0035 (4)
O60.0228 (5)0.0260 (5)0.0319 (5)0.0039 (4)0.0116 (4)0.0081 (4)
N10.0240 (5)0.0190 (5)0.0183 (5)0.0006 (4)0.0107 (5)0.0009 (4)
N20.0236 (5)0.0187 (5)0.0180 (5)0.0017 (4)0.0103 (4)0.0004 (4)
C10.0280 (7)0.0202 (6)0.0213 (6)0.0012 (5)0.0131 (6)0.0010 (5)
C20.0209 (6)0.0179 (6)0.0209 (6)0.0006 (5)0.0106 (5)0.0013 (5)
C30.0281 (7)0.0239 (7)0.0228 (7)0.0030 (5)0.0144 (6)0.0004 (5)
C40.0368 (8)0.0201 (7)0.0310 (8)0.0052 (6)0.0199 (7)0.0015 (6)
C50.0344 (8)0.0219 (7)0.0297 (7)0.0059 (6)0.0173 (6)0.0062 (6)
C60.0327 (7)0.0226 (7)0.0222 (7)0.0031 (6)0.0156 (6)0.0032 (5)
C70.0202 (6)0.0199 (6)0.0204 (6)0.0027 (5)0.0101 (5)0.0008 (5)
C80.0225 (6)0.0233 (6)0.0182 (6)0.0015 (5)0.0089 (5)0.0009 (5)
C90.0229 (6)0.0219 (6)0.0168 (6)0.0020 (5)0.0111 (5)0.0024 (5)
C100.0218 (6)0.0234 (7)0.0174 (6)0.0015 (5)0.0099 (5)0.0028 (5)
C110.0262 (7)0.0198 (6)0.0201 (6)0.0008 (5)0.0127 (6)0.0031 (5)
C120.0294 (7)0.0191 (6)0.0253 (7)0.0019 (5)0.0171 (6)0.0028 (5)
C130.0228 (7)0.0248 (7)0.0251 (7)0.0021 (5)0.0141 (6)0.0035 (5)
C140.0215 (6)0.0232 (6)0.0182 (6)0.0026 (5)0.0106 (5)0.0010 (5)
C150.0294 (7)0.0210 (7)0.0217 (6)0.0002 (5)0.0136 (6)0.0024 (5)
C160.0412 (8)0.0257 (7)0.0366 (8)0.0081 (6)0.0183 (7)0.0110 (6)
C170.0244 (7)0.0228 (7)0.0168 (6)0.0033 (5)0.0087 (5)0.0006 (5)
C180.0230 (6)0.0204 (6)0.0164 (6)0.0018 (5)0.0109 (5)0.0026 (5)
C190.0191 (6)0.0227 (6)0.0162 (6)0.0015 (5)0.0092 (5)0.0040 (5)
C200.0236 (6)0.0202 (6)0.0180 (6)0.0003 (5)0.0116 (5)0.0035 (5)
C210.0242 (7)0.0194 (6)0.0255 (7)0.0027 (5)0.0137 (6)0.0024 (5)
C220.0193 (6)0.0245 (7)0.0274 (7)0.0011 (5)0.0109 (6)0.0022 (5)
C230.0234 (6)0.0221 (6)0.0190 (6)0.0035 (5)0.0108 (5)0.0001 (5)
C240.0258 (7)0.0200 (6)0.0165 (6)0.0030 (5)0.0106 (5)0.0040 (5)
C250.0338 (7)0.0207 (7)0.0276 (7)0.0019 (6)0.0145 (6)0.0046 (5)
Geometric parameters (Å, º) top
O1—C151.2075 (17)C7—H70.96
O2—C151.3519 (19)C8—C91.509 (2)
O2—C161.4432 (16)C8—H8a0.96
O3—C141.3578 (14)C8—H8b0.96
O3—H30.90 (2)C9—C101.3812 (16)
O4—C241.2105 (17)C9—C141.4088 (19)
O5—C241.3488 (19)C10—C111.393 (2)
O5—C251.4426 (15)C10—H100.96
O6—C231.3595 (14)C11—C121.394 (2)
O6—H60.87 (2)C11—C151.4791 (16)
N1—C11.484 (2)C12—C131.3828 (16)
N1—C21.4732 (17)C12—H120.96
N1—C81.4686 (15)C13—C141.389 (2)
N2—C11.480 (2)C13—H130.96
N2—C71.4741 (18)C16—H16a0.96
N2—C171.4775 (16)C16—H16b0.96
C1—H1a0.96C16—H16c0.96
C1—H1b0.96C17—C181.511 (2)
C2—C31.515 (2)C17—H17a0.96
C2—C71.5081 (19)C17—H17b0.96
C2—H20.96C18—C191.3850 (16)
C3—C41.535 (2)C18—C231.4021 (18)
C3—H3a0.96C19—C201.391 (2)
C3—H3b0.96C19—H190.96
C4—C51.531 (2)C20—C211.3951 (18)
C4—H4a0.96C20—C241.4763 (16)
C4—H4b0.96C21—C221.3804 (17)
C5—C61.533 (2)C21—H210.96
C5—H5a0.96C22—C231.390 (2)
C5—H5b0.96C22—H220.96
C6—C71.515 (2)C25—H25a0.96
C6—H6a0.96C25—H25b0.96
C6—H6b0.96C25—H25c0.96
C15—O2—C16115.40 (11)C8—C9—C14120.41 (10)
C14—O3—H3103.5 (11)C10—C9—C14118.31 (13)
C24—O5—C25115.23 (11)C9—C10—C11121.95 (13)
C23—O6—H6104.1 (11)C9—C10—H10119.0222
C1—N1—C2106.36 (12)C11—C10—H10119.0236
C1—N1—C8113.53 (10)C10—C11—C12118.98 (11)
C2—N1—C8114.66 (9)C10—C11—C15117.78 (12)
C1—N2—C7103.68 (13)C12—C11—C15123.23 (13)
C1—N2—C17112.66 (10)C11—C12—C13120.07 (14)
C7—N2—C17112.18 (9)C11—C12—H12119.9668
N1—C1—N2105.84 (10)C13—C12—H12119.9653
N1—C1—H1a109.4722C12—C13—C14120.53 (13)
N1—C1—H1b109.4722C12—C13—H13119.7345
N2—C1—H1a109.4704C14—C13—H13119.7351
N2—C1—H1b109.4705O3—C14—C9121.21 (12)
H1a—C1—H1b112.8746O3—C14—C13118.64 (12)
N1—C2—C3116.58 (14)C9—C14—C13120.14 (11)
N1—C2—C7100.87 (10)O1—C15—O2122.75 (11)
N1—C2—H2111.3309O1—C15—C11124.71 (14)
C3—C2—C7111.32 (10)O2—C15—C11112.54 (12)
C3—C2—H2100.891O2—C16—H16a109.472
C7—C2—H2116.5959O2—C16—H16b109.4708
C2—C3—C4108.75 (15)O2—C16—H16c109.4708
C2—C3—H3a109.472H16a—C16—H16b109.4716
C2—C3—H3b109.4708H16a—C16—H16c109.4711
C4—C3—H3a109.4717H16b—C16—H16c109.471
C4—C3—H3b109.471N2—C17—C18112.97 (9)
H3a—C3—H3b110.1798N2—C17—H17a109.4721
C3—C4—C5112.91 (11)N2—C17—H17b109.469
C3—C4—H4a109.4727C18—C17—H17a109.4721
C3—C4—H4b109.4709C18—C17—H17b109.471
C5—C4—H4a109.4714H17a—C17—H17b105.728
C5—C4—H4b109.4703C17—C18—C19120.39 (11)
H4a—C4—H4b105.7947C17—C18—C23121.45 (10)
C4—C5—C6112.36 (11)C19—C18—C23118.06 (13)
C4—C5—H5a109.4713C18—C19—C20121.81 (12)
C4—C5—H5b109.4717C18—C19—H19119.0941
C6—C5—H5a109.4708C20—C19—H19119.0943
C6—C5—H5b109.4712C19—C20—C21119.18 (11)
H5a—C5—H5b106.4244C19—C20—C24118.18 (12)
C5—C6—C7107.28 (15)C21—C20—C24122.60 (13)
C5—C6—H6a109.4711C20—C21—C22119.93 (13)
C5—C6—H6b109.4712C20—C21—H21120.0335
C7—C6—H6a109.4714C22—C21—H21120.0348
C7—C6—H6b109.4712C21—C22—C23120.34 (12)
H6a—C6—H6b111.5736C21—C22—H22119.8287
N2—C7—C2101.53 (9)C23—C22—H22119.8289
N2—C7—C6118.45 (15)O6—C23—C18121.67 (13)
N2—C7—H7109.7793O6—C23—C22117.68 (11)
C2—C7—C6111.47 (10)C18—C23—C22120.66 (11)
C2—C7—H7116.9848O4—C24—O5122.57 (11)
C6—C7—H799.4758O4—C24—C20124.81 (14)
N1—C8—C9111.57 (9)O5—C24—C20112.61 (12)
N1—C8—H8a109.4706O5—C25—H25a109.4719
N1—C8—H8b109.4706O5—C25—H25b109.4705
C9—C8—H8a109.4711O5—C25—H25c109.4708
C9—C8—H8b109.4718H25a—C25—H25b109.4709
H8a—C8—H8b107.2874H25a—C25—H25c109.472
C8—C9—C10121.21 (12)H25b—C25—H25c109.4712
C10—C11—C15—O11.3 (2)C19—C20—C24—O410.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.90 (2)1.80 (2)2.6383 (18)154.3 (16)
O6—H6···N20.87 (2)1.88 (2)2.6814 (18)153.0 (18)
C2—H2···O1i0.962.573.414 (2)146
C4—H4b···O1i0.962.583.353 (2)137
C16—H16c···O6ii0.962.593.350 (2)136
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H30N2O6
Mr454.5
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)26.3472 (6), 9.1432 (1), 21.6585 (4)
β (°) 121.139 (3)
V3)4465.7 (2)
Z8
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.41 × 0.23 × 0.16
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.853, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
17421, 3970, 3309
Rint0.028
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.54
No. of reflections3970
No. of parameters304
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.90 (2)1.80 (2)2.6383 (18)154.3 (16)
O6—H6···N20.87 (2)1.88 (2)2.6814 (18)153.0 (18)
C2—H2···O1i0.962.573.414 (2)146
C4—H4b···O1i0.962.583.353 (2)137
C16—H16c···O6ii0.962.593.350 (2)136
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x, y+1, z+1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMurray-Rust, P. & Riddell, F. G. (1975). Can. J. Chem. 53, 1933–1935.  CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011a). Acta Cryst. E67, o2627–o2628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011b). Acta Cryst. E67, o2297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011c). Acta Cryst. E67, o2817–o2818.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2911-o2912
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds