organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Dimeth­­oxy-4-methyl-3-[(S)-p-tolyl­sulfin­yl]benzene

aInstituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, CP 04510, México, DF, Mexico
*Correspondence e-mail: toscano@unam.mx

(Received 29 September 2011; accepted 7 October 2011; online 12 October 2011)

In the title compound, C16H18O3S, the dihedral angle between the benzene rings is 75.48 (8)°. The absolute configuration at the stereogenic S-atom center was determined as S. The crystal structure is stabilized by inter­molecular C—H⋯O contacts.

Related literature

For related sulfoxides, see: Brondel et al. (2010[Brondel, N., Moyniham, E. J. A., Lehane, K. N., Eccles, K. S., Elcoate, C. J., Coles, S. J., Lawrence, S. E. & Maguire, A. R. (2010). CrystEngComm, 12, 2910-2927.]); Fuller et al. (2009[Fuller, A. L., Aitken, R. A., Ryan, B. M., Slawin, A. M. Z. & Woollins, J. D. (2009). J. Chem. Crystallogr. 39, 407-415.]). The title compound was prepared as a starting material for the synthesis of the tetra­hydro­protoberberine alkaloids (S)-(−)-tetra­hydro­palmatine and (S)-(−)-canadine following a synthetic strategy similar to that used for the synthesis of (S)-(−)-xylopinine (Mastranzo et al., 2011[Mastranzo, V. M., Yuste, F., Ortiz, B., Sánchez-Obregón, R., Toscano, R. A. & García Ruano, J. L. (2011). J. Org. Chem. 76, 5036-5041.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O3S

  • Mr = 290.36

  • Orthorhombic, P 21 21 21

  • a = 7.4170 (6) Å

  • b = 8.5406 (7) Å

  • c = 24.0980 (19) Å

  • V = 1526.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.38 × 0.37 × 0.31 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.942

  • 20418 measured reflections

  • 3645 independent reflections

  • 3380 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.06

  • 3645 reflections

  • 185 parameters

  • H-atom parameters not refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1534 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O3i 0.96 2.58 3.366 (3) 139
C14—H14⋯O1ii 0.93 2.59 3.457 (2) 155
C15—H15⋯O2ii 0.93 2.55 3.3886 (18) 150
C12—H12⋯O3iii 0.93 2.56 3.406 (2) 152
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compound (S)-1,2-dimethoxy-4-methyl-3-(p-tolylsulfinyl)benzene was prepared as starting material for the synthesis of the tetrahydroprotoberberine alkaloids (S)-(-)-tetrahydropalmatine and (S)-(-)-canadine following a synthetic strategy similar to that used for the synthesis of (S)-(-)-xylopinine (Mastranzo et al., 2011). The absolute configuration of the levorotatory 1,2-dimethoxy-4-methyl-3- (p-tolylsulfinyl)benzene (I) was determined by X-ray structure analysis. Figure 1 clearly shows that has the (S) configuration at the stereogenic S1 center. The geometry at S1 conforms to that found for related p-tolyl sulfinyl derivatives, it adopts an asymmetric propeller-like conformation having the corresponding Cortho—Cipso—S—O dihedral angles equal to -53.11 (15) and -28.07 (16)°. The dihedral angle defined by the least-squares planes of the aromatic rings is 75.48 (8)°. In the structure there are some intermolecular C—H···O contacts.

Related literature top

For related sulfoxides, see: Brondel et al. (2010); Fuller et al. (2009). The title compound was prepared as a starting material for the synthesis of the tetrahydroprotoberberine alkaloids (S)-(-)-tetrahydropalmatine and (S)-(-)-canadine following a synthetic strategy similar to that used for the

synthesis of (S)-(-)-xylopinine (Mastranzo et al., 2011).

Experimental top

1-(3,4-Dimethoxyphenyl)-N,N-dimethylmethanamine

To a stirred solution of dimethylamine hydrochloride (6.4 g, 78.48 mmol) in MeOH (100 ml) KOH (1.2 g, 21.38 mmol) was added. When the pellets were completely dissolved, 3,4-dimethoxybenzaldehyde (10.0 g, 60.17 mmol) was added in one portion. The resulting suspension was stirred at room temperature for 15 min. Then, a solution of NaBH3CN (1.5 g, 23.87 mmol) in MeOH (15 ml) was added dropwise over 30 min. After the addition was complete, the suspension was stirred for 5 h. Potassium hydroxide (15 g) was then added, and stirring was continued until the pellets were completely dissolved. The reaction mixture was filtered with suction, and the filtrate was reduced to approximately 50 ml with a rotary evaporator while the bath temperature was kept below 40°C. To this concentrate EtOAc (100 mL) and brine (25 ml) were added and the layers were separated. The aqueous layer was extracted with EtOAc (2x50 ml). The combined organic layers were washed with brine (10 ml), dried over anhydrous potassium carbonate and concentrated. The residue was purified by flash chromatography (98:2 EtOAc/Et3N) to obtain a pale yellow liquid (8.21 g, 70% yield).

(S)-1-[3,4-Dimethoxy-2-(p-tolylsulfinyl)phenyl]-N,N-dimethylmethanamine

To a stirred solution of 1-(3,4-dimethoxyphenyl)-N,N-dimethylmethanamine (1.6 g, 8.20 mmol) in THF (30 ml) cooled at 0–5°C a 2.3 M solution in hexanes of n-BuLi (4.1 ml, 9.02 mmol) was added dropwise. After 2 h, a solution of (S)-menthyl p-toluenesulfinate (2.9 g, 9.84 mmol) in THF (10 ml) was added via cannula. The resulting mixture was stirred at room temperature for 4 h. Then, the reaction mixture was quenched with of saturated NH4Cl (10 ml) and extracted with EtOAc (3 x 20 ml). The combined organic layers were dried over Na2SO4 and evaporated. The residue was purified by flash chromatography (99:1 EtOAc/Et3N) to give a pale yellow oil (2.4 g, 88% yield), [α]D -16.5 (c 1, CHCl3).

(S)-1-(Chloromethyl)-3,4-dimethoxy-2-(p-tolylsulfinyl)benzene

To a slurry of (S)-1-[3,4-dimethoxy-2-(p-tolylsulfinyl)phenyl]-N,N- dimethyl methanamine (4.02 g, 11.98 mmol, 1 equiv) and K2CO3 (2.64 g, 19.17 mmol, 1.6 equiv) in THF (10 ml) cooled at -78°C ethyl chloroformate (2.08 g, 19.17 mmol, 1.6 equiv) was added. The reaction was stirred at room temperature for 12 h. The resulting mixture was quenched with water (10 ml) and extracted with EtOAc (3x15 ml). The combined organic layers were dried over Na2SO4 and evaporated. The residue was purified by flash chromatography (70:30 hexane/EtOAc) to give a pale yellow solid (2.66 g, 68% yield), mp 77–78°C, [α]D -132.4 (c 1, CHCl3).

(S)-1,2-Dimethoxy-4-methyl-3-(p-tolylsulfinyl)benzene (I)

A mixture of (S)-1-(chloromethyl)-3,4-dimethoxy-2-(p-tolylsulfinyl) benzene (1.72 g, 5.29 mmol) and NaBH4 (1.2 g, 31.77 mmol) in THF (30 ml) was heated at reflux for 18 h. The reaction mixture was quenched with Na2SO4.10H2O and filtered through Celite. The filtrate was evaporated under vacuum and the residue purified by flash chromatography (80:20 hexane/EtOAc) to obtain a white solid (1.03 g, 67%), mp 127–128°C, [α]D -198.2 (c 1, CHCl3).

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the b axis, showing one layer of molecules connected by C—H···O—C and C—H···O—-S hydrogen bonds (dashed lines).
1,2-Dimethoxy-4-methyl-3-[(S)-p-tolylsulfinyl]benzene top
Crystal data top
C16H18O3SDx = 1.263 Mg m3
Mr = 290.36Melting point: 400 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9922 reflections
a = 7.4170 (6) Åθ = 2.5–27.6°
b = 8.5406 (7) ŵ = 0.22 mm1
c = 24.0980 (19) ÅT = 298 K
V = 1526.5 (2) Å3Prism, colourless
Z = 40.38 × 0.37 × 0.31 mm
F(000) = 616
Data collection top
Bruker SMART APEX CCD
diffractometer
3645 independent reflections
Radiation source: fine-focus sealed tube3380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0.661 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1111
Tmin = 0.922, Tmax = 0.942l = 3131
20418 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters not refined
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.0141P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3645 reflectionsΔρmax = 0.25 e Å3
185 parametersΔρmin = 0.13 e Å3
0 restraintsAbsolute structure: Flack (1983), 1534 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C16H18O3SV = 1526.5 (2) Å3
Mr = 290.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4170 (6) ŵ = 0.22 mm1
b = 8.5406 (7) ÅT = 298 K
c = 24.0980 (19) Å0.38 × 0.37 × 0.31 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3645 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3380 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.942Rint = 0.028
20418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters not refined
wR(F2) = 0.099Δρmax = 0.25 e Å3
S = 1.06Δρmin = 0.13 e Å3
3645 reflectionsAbsolute structure: Flack (1983), 1534 Friedel pairs
185 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57970 (5)0.27901 (5)0.149352 (15)0.04842 (12)
O10.77239 (19)0.07949 (18)0.33551 (5)0.0664 (4)
O20.57075 (15)0.25318 (11)0.26763 (4)0.0500 (3)
O30.6876 (2)0.39213 (16)0.11616 (5)0.0671 (4)
C10.8129 (2)0.0711 (2)0.28050 (7)0.0527 (4)
C20.7012 (2)0.15921 (17)0.24538 (6)0.0447 (3)
C30.73064 (19)0.15714 (18)0.18847 (6)0.0451 (3)
C40.8742 (2)0.0726 (2)0.16503 (7)0.0544 (4)
C50.9821 (2)0.0114 (2)0.20084 (9)0.0621 (4)
H51.07790.06840.18630.074*
C60.9531 (2)0.0143 (2)0.25777 (8)0.0621 (4)
H61.02780.07360.28060.074*
C70.9144 (3)0.0710 (3)0.10365 (8)0.0695 (5)
H7A1.03910.04580.09790.104*
H7B0.88920.17230.08820.104*
H7C0.84030.00620.08580.104*
C80.8723 (4)0.0178 (4)0.37212 (9)0.0968 (8)
H8A0.82350.00950.40890.145*
H8B0.99620.01490.37240.145*
H8C0.86490.12450.35980.145*
C90.4070 (3)0.1761 (2)0.28212 (10)0.0709 (5)
H9A0.31630.25280.29030.106*
H9B0.42670.11140.31410.106*
H9C0.36790.11220.25170.106*
C100.49336 (19)0.13539 (18)0.10183 (6)0.0454 (3)
C110.4650 (3)0.1815 (2)0.04729 (7)0.0563 (4)
H110.49750.28150.03580.068*
C120.3884 (3)0.0780 (2)0.01049 (7)0.0613 (4)
H120.36980.10890.02610.074*
C130.3386 (2)0.0713 (2)0.02686 (7)0.0588 (4)
C140.3663 (2)0.1131 (2)0.08149 (8)0.0580 (4)
H140.33300.21280.09310.070*
C150.4417 (2)0.01158 (18)0.11920 (6)0.0511 (3)
H150.45770.04180.15600.061*
C160.2546 (4)0.1816 (3)0.01457 (11)0.0911 (8)
H16A0.33260.19190.04620.137*
H16B0.14010.14100.02630.137*
H16C0.23780.28240.00230.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0537 (2)0.04504 (19)0.04650 (18)0.00360 (16)0.00099 (15)0.00251 (14)
O10.0699 (8)0.0764 (9)0.0528 (6)0.0157 (7)0.0092 (5)0.0025 (6)
O20.0525 (6)0.0466 (6)0.0509 (5)0.0076 (5)0.0038 (5)0.0048 (4)
O30.0840 (9)0.0527 (7)0.0645 (7)0.0127 (6)0.0057 (7)0.0006 (6)
C10.0492 (8)0.0512 (9)0.0576 (9)0.0011 (7)0.0075 (7)0.0026 (7)
C20.0422 (7)0.0406 (7)0.0513 (8)0.0022 (6)0.0032 (6)0.0052 (6)
C30.0405 (7)0.0431 (7)0.0518 (8)0.0004 (6)0.0019 (6)0.0059 (6)
C40.0432 (7)0.0558 (9)0.0642 (9)0.0004 (7)0.0034 (6)0.0108 (8)
C50.0406 (7)0.0647 (10)0.0808 (12)0.0102 (7)0.0022 (8)0.0110 (9)
C60.0455 (9)0.0640 (10)0.0766 (11)0.0082 (8)0.0098 (8)0.0002 (9)
C70.0604 (10)0.0814 (13)0.0667 (10)0.0081 (10)0.0142 (9)0.0172 (9)
C80.1024 (18)0.120 (2)0.0680 (12)0.0358 (17)0.0160 (12)0.0157 (14)
C90.0540 (9)0.0672 (11)0.0915 (14)0.0034 (8)0.0160 (9)0.0008 (10)
C100.0431 (7)0.0479 (8)0.0452 (7)0.0019 (6)0.0009 (6)0.0012 (6)
C110.0641 (10)0.0556 (9)0.0493 (8)0.0001 (8)0.0012 (7)0.0050 (7)
C120.0646 (11)0.0735 (11)0.0457 (7)0.0000 (9)0.0038 (7)0.0004 (8)
C130.0483 (8)0.0698 (11)0.0583 (9)0.0012 (8)0.0009 (7)0.0117 (8)
C140.0550 (9)0.0525 (9)0.0665 (9)0.0093 (7)0.0023 (7)0.0003 (7)
C150.0505 (8)0.0536 (8)0.0490 (7)0.0021 (7)0.0000 (6)0.0049 (6)
C160.0964 (17)0.0960 (17)0.0808 (14)0.0243 (15)0.0147 (13)0.0228 (13)
Geometric parameters (Å, º) top
S1—O31.4877 (13)C8—H8A0.9600
S1—C31.7959 (15)C8—H8B0.9600
S1—C101.7961 (15)C8—H8C0.9600
S1—O22.8595 (11)C9—H9A0.9600
O1—C11.361 (2)C9—H9B0.9600
O1—C81.421 (2)C9—H9C0.9600
O2—C21.3665 (18)C10—C151.377 (2)
O2—C91.425 (2)C10—C111.388 (2)
C1—C61.384 (2)C11—C121.375 (2)
C1—C21.403 (2)C11—H110.9300
C2—C31.389 (2)C12—C131.385 (3)
C3—C41.405 (2)C12—H120.9300
C4—C51.378 (3)C13—C141.380 (3)
C4—C71.509 (3)C13—C161.508 (3)
C5—C61.389 (3)C14—C151.375 (2)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H150.9300
C7—H7A0.9600C16—H16A0.9600
C7—H7B0.9600C16—H16B0.9600
C7—H7C0.9600C16—H16C0.9600
O3—S1—C3108.86 (8)O1—C8—H8B109.5
O3—S1—C10107.00 (7)H8A—C8—H8B109.5
C3—S1—C1099.27 (7)O1—C8—H8C109.5
O3—S1—O2126.76 (6)H8A—C8—H8C109.5
C3—S1—O256.39 (5)H8B—C8—H8C109.5
C10—S1—O2125.07 (5)O2—C9—H9A109.5
C1—O1—C8117.33 (16)O2—C9—H9B109.5
C2—O2—C9115.36 (12)H9A—C9—H9B109.5
C2—O2—S168.76 (8)O2—C9—H9C109.5
C9—O2—S1107.45 (11)H9A—C9—H9C109.5
O1—C1—C6125.38 (15)H9B—C9—H9C109.5
O1—C1—C2115.42 (15)C15—C10—C11120.28 (15)
C6—C1—C2119.19 (16)C15—C10—S1121.85 (11)
O2—C2—C3120.42 (13)C11—C10—S1117.64 (13)
O2—C2—C1119.74 (14)C12—C11—C10119.40 (16)
C3—C2—C1119.74 (14)C12—C11—H11120.3
C2—C3—C4121.52 (14)C10—C11—H11120.3
C2—C3—S1114.39 (11)C11—C12—C13121.22 (15)
C4—C3—S1123.99 (12)C11—C12—H12119.4
C5—C4—C3117.11 (16)C13—C12—H12119.4
C5—C4—C7119.62 (16)C14—C13—C12118.07 (16)
C3—C4—C7123.27 (16)C14—C13—C16122.10 (19)
C4—C5—C6122.54 (15)C12—C13—C16119.83 (18)
C4—C5—H5118.7C15—C14—C13121.86 (16)
C6—C5—H5118.7C15—C14—H14119.1
C1—C6—C5119.86 (16)C13—C14—H14119.1
C1—C6—H6120.1C14—C15—C10119.14 (14)
C5—C6—H6120.1C14—C15—H15120.4
C4—C7—H7A109.5C10—C15—H15120.4
C4—C7—H7B109.5C13—C16—H16A109.5
H7A—C7—H7B109.5C13—C16—H16B109.5
C4—C7—H7C109.5H16A—C16—H16B109.5
H7A—C7—H7C109.5C13—C16—H16C109.5
H7B—C7—H7C109.5H16A—C16—H16C109.5
O1—C8—H8A109.5H16B—C16—H16C109.5
O3—S1—O2—C290.50 (11)C2—C3—C4—C51.6 (2)
C3—S1—O2—C21.18 (9)S1—C3—C4—C5177.80 (13)
C10—S1—O2—C275.52 (10)C2—C3—C4—C7178.16 (17)
O3—S1—O2—C9158.43 (11)S1—C3—C4—C72.0 (2)
C3—S1—O2—C9112.24 (11)C3—C4—C5—C60.1 (3)
C10—S1—O2—C935.55 (12)C7—C4—C5—C6179.69 (19)
C8—O1—C1—C65.7 (3)O1—C1—C6—C5179.05 (18)
C8—O1—C1—C2174.92 (19)C2—C1—C6—C50.3 (3)
C9—O2—C2—C3101.36 (18)C4—C5—C6—C10.9 (3)
S1—O2—C2—C31.47 (11)O3—S1—C10—C15157.47 (13)
C9—O2—C2—C182.32 (19)C3—S1—C10—C1544.36 (14)
S1—O2—C2—C1177.79 (15)O2—S1—C10—C1510.85 (15)
O1—C1—C2—O24.2 (2)O3—S1—C10—C1128.07 (16)
C6—C1—C2—O2175.16 (14)C3—S1—C10—C11141.18 (14)
O1—C1—C2—C3179.42 (15)O2—S1—C10—C11163.61 (12)
C6—C1—C2—C31.2 (2)C15—C10—C11—C121.4 (3)
O2—C2—C3—C4174.15 (14)S1—C10—C11—C12175.92 (14)
C1—C2—C3—C42.2 (2)C10—C11—C12—C130.2 (3)
O2—C2—C3—S12.40 (19)C11—C12—C13—C140.6 (3)
C1—C2—C3—S1178.71 (12)C11—C12—C13—C16179.9 (2)
O3—S1—C3—C2123.34 (12)C12—C13—C14—C150.3 (3)
C10—S1—C3—C2125.01 (12)C16—C13—C14—C15179.6 (2)
O2—S1—C3—C21.19 (9)C13—C14—C15—C100.9 (3)
O3—S1—C3—C453.11 (15)C11—C10—C15—C141.7 (2)
C10—S1—C3—C458.54 (14)S1—C10—C15—C14176.01 (13)
O2—S1—C3—C4175.27 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O3i0.962.583.366 (3)139
C14—H14···O1ii0.932.593.457 (2)155
C15—H15···O2ii0.932.553.3886 (18)150
C12—H12···O3iii0.932.563.406 (2)152
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H18O3S
Mr290.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.4170 (6), 8.5406 (7), 24.0980 (19)
V3)1526.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.38 × 0.37 × 0.31
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.922, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
20418, 3645, 3380
Rint0.028
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.06
No. of reflections3645
No. of parameters185
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.25, 0.13
Absolute structureFlack (1983), 1534 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O3i0.962.583.366 (3)138.7
C14—H14···O1ii0.932.593.457 (2)155.1
C15—H15···O2ii0.932.553.3886 (18)150.2
C12—H12···O3iii0.932.563.406 (2)151.9
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1/2, y+1/2, z.
 

References

First citationBrondel, N., Moyniham, E. J. A., Lehane, K. N., Eccles, K. S., Elcoate, C. J., Coles, S. J., Lawrence, S. E. & Maguire, A. R. (2010). CrystEngComm, 12, 2910–2927.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFuller, A. L., Aitken, R. A., Ryan, B. M., Slawin, A. M. Z. & Woollins, J. D. (2009). J. Chem. Crystallogr. 39, 407–415.  Web of Science CSD CrossRef CAS Google Scholar
First citationMastranzo, V. M., Yuste, F., Ortiz, B., Sánchez-Obregón, R., Toscano, R. A. & García Ruano, J. L. (2011). J. Org. Chem. 76, 5036–5041.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds