organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(3-methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 2 October 2011; accepted 4 October 2011; online 8 October 2011)

In the title compound, C14H12ClNO, the meta-methyl substituent in the aniline ring is positioned anti to the N—H bond. The dihedral angle between the rings is 12.4 (1)°. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, which link the mol­ecules into C(4) chains running along the c-axis direction.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]) and on N-chloro-aryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Monoclinic, P 21 /c

  • a = 13.4379 (9) Å

  • b = 10.2493 (11) Å

  • c = 9.2600 (7) Å

  • β = 92.893 (6)°

  • V = 1273.74 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.81 × 0.17 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.877, Tmax = 0.988

  • 17187 measured reflections

  • 2156 independent reflections

  • 1299 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 0.94

  • 2156 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.06 2.888 (2) 161
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda & Shetty, 2004), in the present work, the crystal structure of 4-chloro-N-(3-methylphenyl)benzamide (I) has been determined (Fig.1). In (I), the meta-methyl substituent in the anilino ring is positioned anti to the N–H bond.

The central amide group –NHCO– is tilted to the anilino ring with the C9—C8—N1—C7 and C13—C8—N1—C7 torsion angles of 30.4 (3)° and -151.2 (2)°. The C2—C1—C7—N1 and C6—C1—C7—N1 torsion angles are -15.7 (3)° and 166.8 (2)°, respectively, while the C2—C1—C7—O1 and C6—C1—C7—O1 torsion angles are 162.8 (2)° and -14.7 (3)°, respectively. But the C1—C7—N1—C8 and C8—N1—C7—O1 torsion angles are 173.6 (2)° and -4.9 (3)°, respectively.

The packing of molecules linked by N—H···O hydrogen bonds is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloro-arylsulfonamides, see: Gowda & Shetty (2004).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate like colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.
4-Chloro-N-(3-methylphenyl)benzamide top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.70Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 4939 reflections
a = 13.4379 (9) Åθ = 3.4–29.4°
b = 10.2493 (11) ŵ = 0.28 mm1
c = 9.2600 (7) ÅT = 293 K
β = 92.893 (6)°Plate, colorless
V = 1273.74 (19) Å30.81 × 0.17 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
2156 independent reflections
Radiation source: fine-focus sealed tube1299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 24.7°, θmin = 4.2°
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
h = 1515
Tmin = 0.877, Tmax = 0.988k = 1212
17187 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0699P)2]
where P = (Fo2 + 2Fc2)/3
2156 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C14H12ClNOV = 1273.74 (19) Å3
Mr = 245.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4379 (9) ŵ = 0.28 mm1
b = 10.2493 (11) ÅT = 293 K
c = 9.2600 (7) Å0.81 × 0.17 × 0.04 mm
β = 92.893 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
2156 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
1299 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.988Rint = 0.040
17187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.94Δρmax = 0.22 e Å3
2156 reflectionsΔρmin = 0.13 e Å3
154 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44789 (14)0.3375 (2)0.05692 (18)0.0570 (5)
C20.40134 (16)0.2716 (2)0.0505 (2)0.0749 (6)
H2A0.43500.20450.09990.090*
C30.30600 (17)0.3031 (3)0.0860 (3)0.0850 (7)
H3A0.27590.25900.16000.102*
C40.25583 (15)0.4008 (3)0.0105 (3)0.0746 (6)
C50.30042 (16)0.4691 (2)0.0950 (2)0.0715 (6)
H5A0.26650.53610.14410.086*
C60.39659 (15)0.4374 (2)0.1280 (2)0.0651 (6)
H6A0.42740.48410.19940.078*
C70.54954 (14)0.3041 (2)0.10552 (19)0.0587 (5)
C80.70086 (15)0.1721 (2)0.0475 (2)0.0636 (6)
C90.76789 (15)0.2328 (2)0.1344 (2)0.0695 (6)
H9A0.75120.31260.17680.083*
C100.85939 (16)0.1769 (3)0.1594 (2)0.0806 (7)
C110.88194 (19)0.0584 (3)0.0961 (3)0.0932 (8)
H11A0.94230.01850.11390.112*
C120.8172 (2)0.0028 (3)0.0066 (3)0.0966 (8)
H12A0.83470.08200.03660.116*
C130.72518 (18)0.0546 (3)0.0188 (2)0.0811 (7)
H13A0.68120.01440.07930.097*
C140.93185 (19)0.2429 (3)0.2533 (3)0.1117 (10)
H14C0.99060.19000.25840.134*
H14B0.94960.32650.21290.134*
H14A0.90180.25440.34870.134*
N10.60639 (12)0.22675 (17)0.01846 (16)0.0636 (5)
H1A0.58330.20810.06400.076*
O10.57677 (10)0.34502 (16)0.22211 (13)0.0762 (5)
Cl10.13343 (4)0.43547 (8)0.04942 (9)0.1151 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0537 (11)0.0700 (14)0.0472 (10)0.0039 (11)0.0032 (8)0.0056 (10)
C20.0575 (13)0.0910 (17)0.0767 (14)0.0007 (11)0.0087 (11)0.0183 (12)
C30.0605 (14)0.108 (2)0.0887 (16)0.0038 (14)0.0215 (12)0.0212 (14)
C40.0506 (12)0.0875 (17)0.0864 (14)0.0042 (11)0.0101 (11)0.0100 (13)
C50.0633 (13)0.0758 (16)0.0751 (13)0.0058 (11)0.0019 (11)0.0011 (11)
C60.0650 (13)0.0747 (15)0.0562 (11)0.0025 (11)0.0096 (10)0.0003 (10)
C70.0562 (12)0.0761 (14)0.0438 (10)0.0039 (10)0.0031 (9)0.0071 (9)
C80.0598 (12)0.0813 (16)0.0498 (10)0.0084 (11)0.0022 (9)0.0116 (11)
C90.0598 (13)0.0931 (17)0.0558 (11)0.0087 (12)0.0043 (10)0.0080 (10)
C100.0590 (14)0.123 (2)0.0590 (12)0.0198 (14)0.0026 (10)0.0145 (13)
C110.0670 (15)0.131 (3)0.0807 (15)0.0254 (16)0.0042 (13)0.0256 (17)
C120.091 (2)0.095 (2)0.1014 (19)0.0246 (16)0.0190 (16)0.0062 (15)
C130.0794 (16)0.0897 (19)0.0739 (14)0.0095 (14)0.0015 (12)0.0021 (13)
C140.0646 (15)0.179 (3)0.0930 (17)0.0155 (17)0.0231 (13)0.0068 (17)
N10.0575 (10)0.0846 (13)0.0494 (9)0.0063 (9)0.0104 (7)0.0001 (8)
O10.0624 (8)0.1183 (13)0.0485 (8)0.0053 (8)0.0093 (6)0.0064 (8)
Cl10.0586 (4)0.1374 (7)0.1517 (7)0.0078 (4)0.0288 (4)0.0031 (5)
Geometric parameters (Å, º) top
C1—C21.378 (3)C8—C91.386 (3)
C1—C61.382 (3)C8—N11.426 (3)
C1—C71.499 (3)C9—C101.387 (3)
C2—C31.377 (3)C9—H9A0.9300
C2—H2A0.9300C10—C111.375 (4)
C3—C41.378 (3)C10—C141.499 (4)
C3—H3A0.9300C11—C121.382 (4)
C4—C51.365 (3)C11—H11A0.9300
C4—Cl11.738 (2)C12—C131.400 (4)
C5—C61.381 (3)C12—H12A0.9300
C5—H5A0.9300C13—H13A0.9300
C6—H6A0.9300C14—H14C0.9600
C7—O11.231 (2)C14—H14B0.9600
C7—N11.342 (2)C14—H14A0.9600
C8—C131.383 (3)N1—H1A0.8600
C2—C1—C6118.24 (19)C8—C9—C10121.3 (2)
C2—C1—C7123.92 (19)C8—C9—H9A119.4
C6—C1—C7117.79 (17)C10—C9—H9A119.4
C3—C2—C1121.3 (2)C11—C10—C9118.2 (2)
C3—C2—H2A119.4C11—C10—C14120.7 (2)
C1—C2—H2A119.4C9—C10—C14121.2 (3)
C2—C3—C4119.1 (2)C10—C11—C12121.6 (2)
C2—C3—H3A120.4C10—C11—H11A119.2
C4—C3—H3A120.4C12—C11—H11A119.2
C5—C4—C3121.0 (2)C11—C12—C13119.9 (3)
C5—C4—Cl1119.86 (19)C11—C12—H12A120.0
C3—C4—Cl1119.17 (18)C13—C12—H12A120.0
C4—C5—C6119.1 (2)C8—C13—C12118.8 (2)
C4—C5—H5A120.4C8—C13—H13A120.6
C6—C5—H5A120.4C12—C13—H13A120.6
C5—C6—C1121.23 (19)C10—C14—H14C109.5
C5—C6—H6A119.4C10—C14—H14B109.5
C1—C6—H6A119.4H14C—C14—H14B109.5
O1—C7—N1122.88 (18)C10—C14—H14A109.5
O1—C7—C1120.08 (17)H14C—C14—H14A109.5
N1—C7—C1117.03 (16)H14B—C14—H14A109.5
C13—C8—C9120.2 (2)C7—N1—C8127.20 (16)
C13—C8—N1116.8 (2)C7—N1—H1A116.4
C9—C8—N1123.0 (2)C8—N1—H1A116.4
C6—C1—C2—C30.4 (3)C13—C8—C9—C101.3 (3)
C7—C1—C2—C3177.07 (19)N1—C8—C9—C10179.60 (17)
C1—C2—C3—C41.3 (4)C8—C9—C10—C110.4 (3)
C2—C3—C4—C52.2 (4)C8—C9—C10—C14179.9 (2)
C2—C3—C4—Cl1176.97 (18)C9—C10—C11—C121.7 (3)
C3—C4—C5—C61.3 (3)C14—C10—C11—C12178.6 (2)
Cl1—C4—C5—C6177.83 (15)C10—C11—C12—C131.4 (4)
C4—C5—C6—C10.5 (3)C9—C8—C13—C121.6 (3)
C2—C1—C6—C51.3 (3)N1—C8—C13—C12179.96 (18)
C7—C1—C6—C5176.33 (17)C11—C12—C13—C80.3 (3)
C2—C1—C7—O1162.80 (19)O1—C7—N1—C84.9 (3)
C6—C1—C7—O114.7 (3)C1—C7—N1—C8173.59 (17)
C2—C1—C7—N115.7 (3)C13—C8—N1—C7151.2 (2)
C6—C1—C7—N1166.77 (17)C9—C8—N1—C730.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.062.888 (2)161
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.4379 (9), 10.2493 (11), 9.2600 (7)
β (°) 92.893 (6)
V3)1273.74 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.81 × 0.17 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)]
Tmin, Tmax0.877, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
17187, 2156, 1299
Rint0.040
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 0.94
No. of reflections2156
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.13

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.062.888 (2)161.2
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

MF and JK thank the Grant Agencies for their financial support: VEGA Grant Agency of Slovak Ministry of Education 1/0679/11; Research and Development Agency (Slovakia) APVV-0202–10 and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds