organic compounds
4-Chloro-N-(3-methylphenyl)benzamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, C14H12ClNO, the meta-methyl substituent in the aniline ring is positioned anti to the N—H bond. The dihedral angle between the rings is 12.4 (1)°. The is stabilized by intermolecular N—H⋯O hydrogen bonds, which link the molecules into C(4) chains running along the c-axis direction.
Related literature
For the preparation of the title compound, see: Gowda et al. (2003). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloro-arylsulfonamides, see: Gowda & Shetty (2004).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536811040864/bt5661sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811040864/bt5661Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811040864/bt5661Isup3.cml
The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate like colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.
All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).C14H12ClNO | F(000) = 512 |
Mr = 245.70 | Dx = 1.281 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2ybc | Cell parameters from 4939 reflections |
a = 13.4379 (9) Å | θ = 3.4–29.4° |
b = 10.2493 (11) Å | µ = 0.28 mm−1 |
c = 9.2600 (7) Å | T = 293 K |
β = 92.893 (6)° | Plate, colorless |
V = 1273.74 (19) Å3 | 0.81 × 0.17 × 0.04 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 2156 independent reflections |
Radiation source: fine-focus sealed tube | 1299 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 24.7°, θmin = 4.2° |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] | h = −15→15 |
Tmin = 0.877, Tmax = 0.988 | k = −12→12 |
17187 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0699P)2] where P = (Fo2 + 2Fc2)/3 |
2156 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.13 e Å−3 |
C14H12ClNO | V = 1273.74 (19) Å3 |
Mr = 245.70 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.4379 (9) Å | µ = 0.28 mm−1 |
b = 10.2493 (11) Å | T = 293 K |
c = 9.2600 (7) Å | 0.81 × 0.17 × 0.04 mm |
β = 92.893 (6)° |
Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 2156 independent reflections |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] | 1299 reflections with I > 2σ(I) |
Tmin = 0.877, Tmax = 0.988 | Rint = 0.040 |
17187 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.22 e Å−3 |
2156 reflections | Δρmin = −0.13 e Å−3 |
154 parameters |
Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.44789 (14) | 0.3375 (2) | −0.05692 (18) | 0.0570 (5) | |
C2 | 0.40134 (16) | 0.2716 (2) | 0.0505 (2) | 0.0749 (6) | |
H2A | 0.4350 | 0.2045 | 0.0999 | 0.090* | |
C3 | 0.30600 (17) | 0.3031 (3) | 0.0860 (3) | 0.0850 (7) | |
H3A | 0.2759 | 0.2590 | 0.1600 | 0.102* | |
C4 | 0.25583 (15) | 0.4008 (3) | 0.0105 (3) | 0.0746 (6) | |
C5 | 0.30042 (16) | 0.4691 (2) | −0.0950 (2) | 0.0715 (6) | |
H5A | 0.2665 | 0.5361 | −0.1441 | 0.086* | |
C6 | 0.39659 (15) | 0.4374 (2) | −0.1280 (2) | 0.0651 (6) | |
H6A | 0.4274 | 0.4841 | −0.1994 | 0.078* | |
C7 | 0.54954 (14) | 0.3041 (2) | −0.10552 (19) | 0.0587 (5) | |
C8 | 0.70086 (15) | 0.1721 (2) | −0.0475 (2) | 0.0636 (6) | |
C9 | 0.76789 (15) | 0.2328 (2) | −0.1344 (2) | 0.0695 (6) | |
H9A | 0.7512 | 0.3126 | −0.1768 | 0.083* | |
C10 | 0.85939 (16) | 0.1769 (3) | −0.1594 (2) | 0.0806 (7) | |
C11 | 0.88194 (19) | 0.0584 (3) | −0.0961 (3) | 0.0932 (8) | |
H11A | 0.9423 | 0.0185 | −0.1139 | 0.112* | |
C12 | 0.8172 (2) | −0.0028 (3) | −0.0066 (3) | 0.0966 (8) | |
H12A | 0.8347 | −0.0820 | 0.0366 | 0.116* | |
C13 | 0.72518 (18) | 0.0546 (3) | 0.0188 (2) | 0.0811 (7) | |
H13A | 0.6812 | 0.0144 | 0.0793 | 0.097* | |
C14 | 0.93185 (19) | 0.2429 (3) | −0.2533 (3) | 0.1117 (10) | |
H14C | 0.9906 | 0.1900 | −0.2584 | 0.134* | |
H14B | 0.9496 | 0.3265 | −0.2129 | 0.134* | |
H14A | 0.9018 | 0.2544 | −0.3487 | 0.134* | |
N1 | 0.60639 (12) | 0.22675 (17) | −0.01846 (16) | 0.0636 (5) | |
H1A | 0.5833 | 0.2081 | 0.0640 | 0.076* | |
O1 | 0.57677 (10) | 0.34502 (16) | −0.22211 (13) | 0.0762 (5) | |
Cl1 | 0.13343 (4) | 0.43547 (8) | 0.04942 (9) | 0.1151 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0537 (11) | 0.0700 (14) | 0.0472 (10) | −0.0039 (11) | 0.0032 (8) | −0.0056 (10) |
C2 | 0.0575 (13) | 0.0910 (17) | 0.0767 (14) | 0.0007 (11) | 0.0087 (11) | 0.0183 (12) |
C3 | 0.0605 (14) | 0.108 (2) | 0.0887 (16) | −0.0038 (14) | 0.0215 (12) | 0.0212 (14) |
C4 | 0.0506 (12) | 0.0875 (17) | 0.0864 (14) | −0.0042 (11) | 0.0101 (11) | −0.0100 (13) |
C5 | 0.0633 (13) | 0.0758 (16) | 0.0751 (13) | 0.0058 (11) | 0.0019 (11) | −0.0011 (11) |
C6 | 0.0650 (13) | 0.0747 (15) | 0.0562 (11) | −0.0025 (11) | 0.0096 (10) | −0.0003 (10) |
C7 | 0.0562 (12) | 0.0761 (14) | 0.0438 (10) | −0.0039 (10) | 0.0031 (9) | −0.0071 (9) |
C8 | 0.0598 (12) | 0.0813 (16) | 0.0498 (10) | 0.0084 (11) | 0.0022 (9) | −0.0116 (11) |
C9 | 0.0598 (13) | 0.0931 (17) | 0.0558 (11) | 0.0087 (12) | 0.0043 (10) | −0.0080 (10) |
C10 | 0.0590 (14) | 0.123 (2) | 0.0590 (12) | 0.0198 (14) | −0.0026 (10) | −0.0145 (13) |
C11 | 0.0670 (15) | 0.131 (3) | 0.0807 (15) | 0.0254 (16) | −0.0042 (13) | −0.0256 (17) |
C12 | 0.091 (2) | 0.095 (2) | 0.1014 (19) | 0.0246 (16) | −0.0190 (16) | −0.0062 (15) |
C13 | 0.0794 (16) | 0.0897 (19) | 0.0739 (14) | 0.0095 (14) | 0.0015 (12) | −0.0021 (13) |
C14 | 0.0646 (15) | 0.179 (3) | 0.0930 (17) | 0.0155 (17) | 0.0231 (13) | −0.0068 (17) |
N1 | 0.0575 (10) | 0.0846 (13) | 0.0494 (9) | 0.0063 (9) | 0.0104 (7) | −0.0001 (8) |
O1 | 0.0624 (8) | 0.1183 (13) | 0.0485 (8) | 0.0053 (8) | 0.0093 (6) | 0.0064 (8) |
Cl1 | 0.0586 (4) | 0.1374 (7) | 0.1517 (7) | 0.0078 (4) | 0.0288 (4) | 0.0031 (5) |
C1—C2 | 1.378 (3) | C8—C9 | 1.386 (3) |
C1—C6 | 1.382 (3) | C8—N1 | 1.426 (3) |
C1—C7 | 1.499 (3) | C9—C10 | 1.387 (3) |
C2—C3 | 1.377 (3) | C9—H9A | 0.9300 |
C2—H2A | 0.9300 | C10—C11 | 1.375 (4) |
C3—C4 | 1.378 (3) | C10—C14 | 1.499 (4) |
C3—H3A | 0.9300 | C11—C12 | 1.382 (4) |
C4—C5 | 1.365 (3) | C11—H11A | 0.9300 |
C4—Cl1 | 1.738 (2) | C12—C13 | 1.400 (4) |
C5—C6 | 1.381 (3) | C12—H12A | 0.9300 |
C5—H5A | 0.9300 | C13—H13A | 0.9300 |
C6—H6A | 0.9300 | C14—H14C | 0.9600 |
C7—O1 | 1.231 (2) | C14—H14B | 0.9600 |
C7—N1 | 1.342 (2) | C14—H14A | 0.9600 |
C8—C13 | 1.383 (3) | N1—H1A | 0.8600 |
C2—C1—C6 | 118.24 (19) | C8—C9—C10 | 121.3 (2) |
C2—C1—C7 | 123.92 (19) | C8—C9—H9A | 119.4 |
C6—C1—C7 | 117.79 (17) | C10—C9—H9A | 119.4 |
C3—C2—C1 | 121.3 (2) | C11—C10—C9 | 118.2 (2) |
C3—C2—H2A | 119.4 | C11—C10—C14 | 120.7 (2) |
C1—C2—H2A | 119.4 | C9—C10—C14 | 121.2 (3) |
C2—C3—C4 | 119.1 (2) | C10—C11—C12 | 121.6 (2) |
C2—C3—H3A | 120.4 | C10—C11—H11A | 119.2 |
C4—C3—H3A | 120.4 | C12—C11—H11A | 119.2 |
C5—C4—C3 | 121.0 (2) | C11—C12—C13 | 119.9 (3) |
C5—C4—Cl1 | 119.86 (19) | C11—C12—H12A | 120.0 |
C3—C4—Cl1 | 119.17 (18) | C13—C12—H12A | 120.0 |
C4—C5—C6 | 119.1 (2) | C8—C13—C12 | 118.8 (2) |
C4—C5—H5A | 120.4 | C8—C13—H13A | 120.6 |
C6—C5—H5A | 120.4 | C12—C13—H13A | 120.6 |
C5—C6—C1 | 121.23 (19) | C10—C14—H14C | 109.5 |
C5—C6—H6A | 119.4 | C10—C14—H14B | 109.5 |
C1—C6—H6A | 119.4 | H14C—C14—H14B | 109.5 |
O1—C7—N1 | 122.88 (18) | C10—C14—H14A | 109.5 |
O1—C7—C1 | 120.08 (17) | H14C—C14—H14A | 109.5 |
N1—C7—C1 | 117.03 (16) | H14B—C14—H14A | 109.5 |
C13—C8—C9 | 120.2 (2) | C7—N1—C8 | 127.20 (16) |
C13—C8—N1 | 116.8 (2) | C7—N1—H1A | 116.4 |
C9—C8—N1 | 123.0 (2) | C8—N1—H1A | 116.4 |
C6—C1—C2—C3 | 0.4 (3) | C13—C8—C9—C10 | 1.3 (3) |
C7—C1—C2—C3 | −177.07 (19) | N1—C8—C9—C10 | 179.60 (17) |
C1—C2—C3—C4 | 1.3 (4) | C8—C9—C10—C11 | 0.4 (3) |
C2—C3—C4—C5 | −2.2 (4) | C8—C9—C10—C14 | −179.9 (2) |
C2—C3—C4—Cl1 | 176.97 (18) | C9—C10—C11—C12 | −1.7 (3) |
C3—C4—C5—C6 | 1.3 (3) | C14—C10—C11—C12 | 178.6 (2) |
Cl1—C4—C5—C6 | −177.83 (15) | C10—C11—C12—C13 | 1.4 (4) |
C4—C5—C6—C1 | 0.5 (3) | C9—C8—C13—C12 | −1.6 (3) |
C2—C1—C6—C5 | −1.3 (3) | N1—C8—C13—C12 | 179.96 (18) |
C7—C1—C6—C5 | 176.33 (17) | C11—C12—C13—C8 | 0.3 (3) |
C2—C1—C7—O1 | 162.80 (19) | O1—C7—N1—C8 | −4.9 (3) |
C6—C1—C7—O1 | −14.7 (3) | C1—C7—N1—C8 | 173.59 (17) |
C2—C1—C7—N1 | −15.7 (3) | C13—C8—N1—C7 | −151.2 (2) |
C6—C1—C7—N1 | 166.77 (17) | C9—C8—N1—C7 | 30.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.06 | 2.888 (2) | 161 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H12ClNO |
Mr | 245.70 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 13.4379 (9), 10.2493 (11), 9.2600 (7) |
β (°) | 92.893 (6) |
V (Å3) | 1273.74 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.81 × 0.17 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector |
Absorption correction | Analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] |
Tmin, Tmax | 0.877, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17187, 2156, 1299 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.588 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.117, 0.94 |
No. of reflections | 2156 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.13 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.06 | 2.888 (2) | 161.2 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
MF and JK thank the Grant Agencies for their financial support: VEGA Grant Agency of Slovak Ministry of Education 1/0679/11; Research and Development Agency (Slovakia) APVV-0202–10 and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230. CAS Google Scholar
Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864. Web of Science CrossRef CAS Google Scholar
Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda & Shetty, 2004), in the present work, the crystal structure of 4-chloro-N-(3-methylphenyl)benzamide (I) has been determined (Fig.1). In (I), the meta-methyl substituent in the anilino ring is positioned anti to the N–H bond.
The central amide group –NHCO– is tilted to the anilino ring with the C9—C8—N1—C7 and C13—C8—N1—C7 torsion angles of 30.4 (3)° and -151.2 (2)°. The C2—C1—C7—N1 and C6—C1—C7—N1 torsion angles are -15.7 (3)° and 166.8 (2)°, respectively, while the C2—C1—C7—O1 and C6—C1—C7—O1 torsion angles are 162.8 (2)° and -14.7 (3)°, respectively. But the C1—C7—N1—C8 and C8—N1—C7—O1 torsion angles are 173.6 (2)° and -4.9 (3)°, respectively.
The packing of molecules linked by N—H···O hydrogen bonds is shown in Fig. 2.