metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cobalt(II) bis­­[4-(pyridin-2-yl­meth­­oxy)benzoate] dihydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 3 October 2011; accepted 5 October 2011; online 12 October 2011)

The CoII atom in the title salt, [Co(H2O)6](C13H10NO3)2·2H2O, lies on a center of inversion in an octa­hedron of water mol­ecules. The cations, anions and uncoordinated water mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional network. The anion is essentially planar, with an r.m.s. deviation of all non-H atoms of 0.066 Å.

Related literature

There are many examples of hexa­aqua­cobalt(II) benzoates; these benzoates possess substitutents capable of serving as hydrogen-bond acceptors/donors, see: Deng et al. (2006[Deng, Z.-P., Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, m3423-m3424.]). For the isotypic Mn(II) salt, see: Zhang et al. (2011[Zhang, L.-W., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1520.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(H2O)6](C13H10NO3)2·2H2O

  • Mr = 659.50

  • Triclinic, [P \overline 1]

  • a = 7.4349 (3) Å

  • b = 7.5431 (3) Å

  • c = 13.7531 (6) Å

  • α = 84.307 (1)°

  • β = 83.153 (1)°

  • γ = 73.333 (1)°

  • V = 731.91 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.874, Tmax = 0.919

  • 7251 measured reflections

  • 3314 independent reflections

  • 2401 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.138

  • S = 1.15

  • 3314 reflections

  • 228 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1 0.84 (1) 1.94 (1) 2.762 (3) 169 (3)
O1w—H12⋯O4wi 0.84 (1) 1.87 (1) 2.696 (4) 171 (4)
O2w—H21⋯O2 0.84 (1) 1.84 (1) 2.678 (3) 179 (3)
O2w—H22⋯O2ii 0.84 (1) 1.97 (2) 2.755 (3) 156 (3)
O3w—H31⋯O1iii 0.85 (1) 1.96 (1) 2.798 (3) 170 (4)
O3w—H32⋯N1iv 0.85 (1) 1.95 (1) 2.799 (3) 177 (4)
O4w—H41⋯O2 0.84 (1) 2.22 (4) 2.891 (4) 137 (5)
O4w—H42⋯O3wv 0.84 (1) 2.42 (4) 3.176 (4) 151 (7)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z+1; (v) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

First-row transition metal dications form a plethora of metal dicarboxylates; however, occasionally, no direct metal–carboxylate bond is formed, and the product consists of hexaaquametal cations and carboxylate ions, the anion interacting indirectly in an outer-sphere type of coordination. 4-(Pyridin-2-ylmethoxy)benzoic acid is a commercially available carboxylic acid but there are no reports on its metal carboxylates. The reaction of the deprotonated acid with cobalt(II) ions gives the hexaaquacobalt(II) salt (Scheme I, Fig. 1). The CoII atom in the salt lies on a center-of-inversion in an octahedron of water molecules. The metal atom interacts with the carboxylate ion indirectly, through the coordinated water molecules, in an outer-sphere type of coordination. The cations, anions and lattice water molecules are linked by O···H···O and O–H···N hydrogen bonds into a three-dimensional network (Table 1).

Related literature top

There are many examples of hexaaquacobalt(II) benzoates; these benzoates possess substitutents capable of serving as hydrogen-bond acceptors/donors, see: Deng et al. (2006). For the isotypic Mn(II) salt, see: Zhang et al. (2011).

Experimental top

Cobalt nitrate (1 mmol) was added to an aqueous solution of 4-(pyridin-2-ylmethoxy)benzoic acid (2 mmol) that was earlier been treated with 1M sodium hydroxide to a pH of 6. The filtered solution was set aside for several days, after which pink prismatic crystals separated from solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and H···H 1.37±0.01 Å; their displacement factors were refined.

The anisotropic displacement ellipsoids of the lattice water O were restrained to an isotropic behaviour.

The (2 2 7) reflection was omitted owing to bad agreement.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Co(H2O)6.2(C13H10NO3).2H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Hexaaquacobalt(II) bis[4-(pyridin-2-ylmethoxy)benzoate] dihydrate top
Crystal data top
[Co(H2O)6](C13H10NO3)2·2H2OZ = 1
Mr = 659.50F(000) = 345
Triclinic, P1Dx = 1.496 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4349 (3) ÅCell parameters from 5547 reflections
b = 7.5431 (3) Åθ = 3.1–27.4°
c = 13.7531 (6) ŵ = 0.66 mm1
α = 84.307 (1)°T = 293 K
β = 83.153 (1)°Prism, pink
γ = 73.333 (1)°0.21 × 0.15 × 0.13 mm
V = 731.91 (5) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3314 independent reflections
Radiation source: fine-focus sealed tube2401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.874, Tmax = 0.919k = 99
7251 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.3695P]
where P = (Fo2 + 2Fc2)/3
3314 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.63 e Å3
18 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Co(H2O)6](C13H10NO3)2·2H2Oγ = 73.333 (1)°
Mr = 659.50V = 731.91 (5) Å3
Triclinic, P1Z = 1
a = 7.4349 (3) ÅMo Kα radiation
b = 7.5431 (3) ŵ = 0.66 mm1
c = 13.7531 (6) ÅT = 293 K
α = 84.307 (1)°0.21 × 0.15 × 0.13 mm
β = 83.153 (1)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3314 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2401 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.919Rint = 0.026
7251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03618 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.63 e Å3
3314 reflectionsΔρmin = 0.69 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02876 (18)
O10.4152 (3)0.8175 (3)0.26860 (15)0.0429 (5)
O20.3638 (3)1.0264 (3)0.37899 (14)0.0415 (5)
O30.2477 (4)1.5730 (3)0.00100 (15)0.0493 (6)
O1W0.2738 (3)0.5989 (3)0.41333 (15)0.0368 (5)
O2W0.4601 (3)0.7721 (2)0.52791 (14)0.0368 (5)
O3W0.3196 (3)0.4485 (3)0.62650 (14)0.0376 (5)
O4W0.0843 (4)1.2664 (5)0.5083 (3)0.0673 (8)
N10.1751 (4)1.7407 (3)0.25030 (18)0.0403 (6)
C10.3773 (4)0.9820 (4)0.2913 (2)0.0321 (6)
C20.3421 (4)1.1356 (4)0.21207 (19)0.0301 (6)
C30.3111 (5)1.3191 (4)0.2343 (2)0.0373 (7)
H30.31071.34620.29890.045*
C40.2809 (5)1.4610 (4)0.1611 (2)0.0403 (7)
H40.26041.58300.17640.048*
C50.2812 (4)1.4210 (4)0.0650 (2)0.0345 (6)
C60.3114 (5)1.2396 (4)0.0414 (2)0.0366 (7)
H60.31091.21300.02320.044*
C70.3425 (4)1.0985 (4)0.1154 (2)0.0338 (6)
H70.36410.97650.09980.041*
C80.2360 (5)1.5490 (4)0.1010 (2)0.0363 (7)
H8A0.13971.48770.10620.044*
H8B0.35571.47340.12940.044*
C90.1869 (4)1.7387 (4)0.15412 (19)0.0317 (6)
C100.1258 (5)1.9066 (5)0.3007 (2)0.0452 (8)
H100.11691.90940.36780.054*
C110.0878 (5)2.0720 (5)0.2581 (3)0.0490 (8)
H11A0.05342.18400.29550.059*
C120.1014 (5)2.0687 (5)0.1596 (3)0.0502 (8)
H12A0.07652.17870.12880.060*
C130.1528 (5)1.8992 (4)0.1062 (2)0.0434 (7)
H130.16421.89360.03930.052*
H110.304 (5)0.677 (4)0.372 (2)0.065 (13)*
H120.167 (3)0.646 (5)0.442 (3)0.069 (14)*
H210.430 (5)0.853 (3)0.4814 (16)0.048 (10)*
H220.503 (5)0.816 (4)0.5708 (17)0.053 (11)*
H310.390 (5)0.361 (3)0.660 (2)0.065 (12)*
H320.271 (5)0.536 (3)0.664 (2)0.065 (12)*
H410.117 (7)1.227 (7)0.4522 (18)0.10 (2)*
H420.149 (10)1.336 (11)0.518 (5)0.24 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0379 (3)0.0210 (3)0.0273 (3)0.0075 (2)0.0068 (2)0.00113 (19)
O10.0675 (15)0.0234 (9)0.0361 (11)0.0079 (10)0.0129 (10)0.0013 (8)
O20.0683 (15)0.0294 (10)0.0284 (10)0.0143 (10)0.0137 (10)0.0032 (8)
O30.0880 (18)0.0294 (10)0.0294 (11)0.0134 (11)0.0167 (11)0.0073 (8)
O1W0.0426 (13)0.0308 (10)0.0367 (11)0.0092 (9)0.0095 (10)0.0021 (9)
O2W0.0612 (14)0.0230 (9)0.0277 (10)0.0109 (9)0.0136 (9)0.0005 (8)
O3W0.0462 (13)0.0312 (10)0.0294 (10)0.0035 (9)0.0002 (9)0.0000 (9)
O4W0.0531 (17)0.0683 (18)0.077 (2)0.0156 (14)0.0123 (15)0.0117 (16)
N10.0455 (15)0.0375 (13)0.0312 (12)0.0026 (11)0.0027 (11)0.0020 (10)
C10.0416 (17)0.0266 (13)0.0296 (14)0.0098 (12)0.0121 (12)0.0026 (11)
C20.0354 (15)0.0248 (12)0.0294 (13)0.0071 (11)0.0063 (11)0.0022 (10)
C30.0537 (19)0.0300 (14)0.0274 (13)0.0080 (13)0.0094 (13)0.0021 (11)
C40.060 (2)0.0231 (13)0.0366 (15)0.0077 (13)0.0107 (14)0.0000 (11)
C50.0428 (17)0.0305 (14)0.0286 (13)0.0084 (12)0.0074 (12)0.0057 (11)
C60.0532 (19)0.0309 (14)0.0244 (13)0.0088 (13)0.0065 (12)0.0016 (11)
C70.0404 (16)0.0253 (13)0.0336 (15)0.0044 (12)0.0067 (12)0.0026 (11)
C80.0474 (18)0.0315 (14)0.0273 (13)0.0076 (13)0.0042 (12)0.0019 (11)
C90.0348 (15)0.0329 (14)0.0251 (13)0.0078 (12)0.0024 (11)0.0040 (11)
C100.0486 (19)0.0471 (18)0.0302 (15)0.0013 (15)0.0044 (13)0.0087 (13)
C110.058 (2)0.0365 (16)0.0501 (19)0.0103 (15)0.0161 (16)0.0150 (14)
C120.071 (2)0.0336 (15)0.0473 (19)0.0124 (16)0.0194 (17)0.0016 (14)
C130.060 (2)0.0358 (15)0.0352 (15)0.0120 (15)0.0145 (14)0.0008 (12)
Geometric parameters (Å, º) top
Co1—O2W2.0559 (18)C2—C71.385 (4)
Co1—O2Wi2.0559 (18)C2—C31.395 (4)
Co1—O1Wi2.094 (2)C3—C41.383 (4)
Co1—O1W2.094 (2)C3—H30.9300
Co1—O3Wi2.141 (2)C4—C51.384 (4)
Co1—O3W2.141 (2)C4—H40.9300
O1—C11.254 (3)C5—C61.387 (4)
O2—C11.268 (3)C6—C71.387 (4)
O3—C51.372 (3)C6—H60.9300
O3—C81.420 (3)C7—H70.9300
O1W—H110.837 (10)C8—C91.507 (4)
O1W—H120.838 (10)C8—H8A0.9700
O2W—H210.841 (10)C8—H8B0.9700
O2W—H220.841 (10)C9—C131.381 (4)
O3W—H310.847 (10)C10—C111.372 (5)
O3W—H320.846 (10)C10—H100.9300
O4W—H410.837 (10)C11—C121.369 (5)
O4W—H420.839 (10)C11—H11A0.9300
N1—C91.334 (4)C12—C131.386 (4)
N1—C101.344 (4)C12—H12A0.9300
C1—C21.497 (4)C13—H130.9300
O2W—Co1—O2Wi180.000 (1)C2—C3—H3119.8
O2W—Co1—O1Wi93.59 (8)C3—C4—C5119.9 (3)
O2Wi—Co1—O1Wi86.41 (8)C3—C4—H4120.1
O2W—Co1—O1W86.41 (8)C5—C4—H4120.1
O2Wi—Co1—O1W93.59 (8)O3—C5—C4114.6 (2)
O1Wi—Co1—O1W180.0O3—C5—C6124.8 (3)
O2W—Co1—O3Wi86.46 (8)C4—C5—C6120.5 (2)
O2Wi—Co1—O3Wi93.54 (8)C5—C6—C7119.0 (3)
O1Wi—Co1—O3Wi92.45 (9)C5—C6—H6120.5
O1W—Co1—O3Wi87.55 (8)C7—C6—H6120.5
O2W—Co1—O3W93.54 (8)C2—C7—C6121.3 (3)
O2Wi—Co1—O3W86.46 (8)C2—C7—H7119.3
O1Wi—Co1—O3W87.55 (8)C6—C7—H7119.3
O1W—Co1—O3W92.45 (9)O3—C8—C9107.6 (2)
O3Wi—Co1—O3W180.000 (1)O3—C8—H8A110.2
C5—O3—C8119.4 (2)C9—C8—H8A110.2
Co1—O1W—H11106 (3)O3—C8—H8B110.2
Co1—O1W—H12117 (3)C9—C8—H8B110.2
H11—O1W—H12109.7 (17)H8A—C8—H8B108.5
Co1—O2W—H21117 (2)N1—C9—C13122.4 (3)
Co1—O2W—H22130 (2)N1—C9—C8115.3 (2)
H21—O2W—H22109.4 (16)C13—C9—C8122.3 (2)
Co1—O3W—H31104 (3)N1—C10—C11123.2 (3)
Co1—O3W—H32117 (3)N1—C10—H10118.4
H31—O3W—H32107.6 (16)C11—C10—H10118.4
H41—O4W—H42109 (6)C12—C11—C10118.7 (3)
C9—N1—C10117.8 (3)C12—C11—H11A120.7
O1—C1—O2123.3 (2)C10—C11—H11A120.7
O1—C1—C2119.1 (2)C11—C12—C13119.1 (3)
O2—C1—C2117.6 (2)C11—C12—H12A120.4
C7—C2—C3118.8 (2)C13—C12—H12A120.4
C7—C2—C1120.9 (2)C9—C13—C12118.8 (3)
C3—C2—C1120.4 (2)C9—C13—H13120.6
C4—C3—C2120.5 (3)C12—C13—H13120.6
C4—C3—H3119.8
O1—C1—C2—C73.0 (4)C1—C2—C7—C6179.5 (3)
O2—C1—C2—C7175.9 (3)C5—C6—C7—C20.6 (5)
O1—C1—C2—C3176.1 (3)C5—O3—C8—C9176.6 (3)
O2—C1—C2—C35.1 (4)C10—N1—C9—C130.8 (5)
C7—C2—C3—C40.1 (5)C10—N1—C9—C8177.9 (3)
C1—C2—C3—C4179.2 (3)O3—C8—C9—N1178.4 (3)
C2—C3—C4—C50.1 (5)O3—C8—C9—C132.9 (4)
C8—O3—C5—C4177.1 (3)C9—N1—C10—C110.1 (5)
C8—O3—C5—C62.2 (5)N1—C10—C11—C120.3 (6)
C3—C4—C5—O3179.3 (3)C10—C11—C12—C130.0 (6)
C3—C4—C5—C60.1 (5)N1—C9—C13—C121.1 (5)
O3—C5—C6—C7179.6 (3)C8—C9—C13—C12177.6 (3)
C4—C5—C6—C70.4 (5)C11—C12—C13—C90.6 (5)
C3—C2—C7—C60.5 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.84 (1)1.94 (1)2.762 (3)169 (3)
O1w—H12···O4wii0.84 (1)1.87 (1)2.696 (4)171 (4)
O2w—H21···O20.84 (1)1.84 (1)2.678 (3)179 (3)
O2w—H22···O2iii0.84 (1)1.97 (2)2.755 (3)156 (3)
O3w—H31···O1i0.85 (1)1.96 (1)2.798 (3)170 (4)
O3w—H32···N1iv0.85 (1)1.95 (1)2.799 (3)177 (4)
O4w—H41···O20.84 (1)2.22 (4)2.891 (4)137 (5)
O4w—H42···O3wv0.84 (1)2.42 (4)3.176 (4)151 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z+1; (iv) x, y1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(H2O)6](C13H10NO3)2·2H2O
Mr659.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4349 (3), 7.5431 (3), 13.7531 (6)
α, β, γ (°)84.307 (1), 83.153 (1), 73.333 (1)
V3)731.91 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.21 × 0.15 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.874, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
7251, 3314, 2401
Rint0.026
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.138, 1.15
No. of reflections3314
No. of parameters228
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.69

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.84 (1)1.94 (1)2.762 (3)169 (3)
O1w—H12···O4wi0.84 (1)1.87 (1)2.696 (4)171 (4)
O2w—H21···O20.84 (1)1.84 (1)2.678 (3)179 (3)
O2w—H22···O2ii0.84 (1)1.97 (2)2.755 (3)156 (3)
O3w—H31···O1iii0.85 (1)1.96 (1)2.798 (3)170 (4)
O3w—H32···N1iv0.85 (1)1.95 (1)2.799 (3)177 (4)
O4w—H41···O20.84 (1)2.22 (4)2.891 (4)137 (5)
O4w—H42···O3wv0.84 (1)2.42 (4)3.176 (4)151 (7)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z+1; (v) x, y+1, z.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDeng, Z.-P., Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, m3423–m3424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-W., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1520.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds