metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cobalt(II) bis­­(2,2′-sulfanediyldi­acetato-κ3O,S,O′)cobaltate(II) tetra­hydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 3 October 2011; accepted 5 October 2011; online 12 October 2011)

The two CoII atoms in the title salt, [Co(H2O)6][Co(C4H4O4S)2]·4H2O, exist in an octa­hedral coordination environment. In the cation, the Co atom is surrounded by six water mol­ecules, and in the anion, it is bis-O,S,O′-chelated by the thio­acetate ligands. The cations, anions and uncoordinated water mol­ecules are linked by O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the isotypic nickel(II) analog, see: Pan et al. (2005[Pan, T.-T., Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. E61, m1376-m1378.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(H2O)6][Co(C4H4O4S)2]·4H2O

  • Mr = 594.28

  • Monoclinic, C c

  • a = 18.8627 (9) Å

  • b = 13.5779 (7) Å

  • c = 8.9535 (4) Å

  • β = 101.403 (1)°

  • V = 2247.87 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 293 K

  • 0.18 × 0.14 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.745, Tmax = 0.793

  • 10837 measured reflections

  • 4978 independent reflections

  • 4802 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.01

  • 4978 reflections

  • 331 parameters

  • 56 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.58 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2402 Friedel pairs

  • Flack parameter: 0.02 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2 0.84 (1) 1.89 (2) 2.707 (4) 162 (5)
O1w—H12⋯O6i 0.84 (1) 1.95 (1) 2.791 (4) 173 (5)
O2w—H21⋯O8wii 0.84 (1) 2.08 (2) 2.824 (3) 147 (3)
O2w—H22⋯O4iii 0.85 (1) 1.98 (1) 2.813 (3) 170 (4)
O3w—H31⋯O4iv 0.83 (1) 1.87 (2) 2.671 (3) 163 (5)
O3w—H32⋯O8v 0.83 (1) 1.85 (2) 2.666 (3) 168 (5)
O4w—H41⋯O7wvi 0.85 (1) 2.06 (2) 2.880 (4) 162 (4)
O4w—H42⋯O8vii 0.85 (1) 1.96 (1) 2.805 (3) 173 (4)
O5w—H51⋯O9wiii 0.83 (1) 1.84 (2) 2.657 (4) 166 (3)
O5w—H52⋯O5i 0.84 (1) 1.89 (1) 2.721 (3) 179 (5)
O6w—H61⋯O1 0.83 (1) 1.91 (2) 2.726 (3) 166 (4)
O6w—H62⋯O10w 0.84 (1) 1.91 (1) 2.746 (3) 177 (4)
O7w—H71⋯O2 0.83 (1) 2.18 (4) 2.828 (4) 135 (5)
O7w—H72⋯O8w 0.84 (1) 1.96 (2) 2.777 (4) 165 (5)
O8w—H81⋯O6i 0.85 (1) 1.91 (1) 2.751 (3) 172 (5)
O8w—H82⋯O3viii 0.84 (1) 2.13 (1) 2.965 (3) 168 (4)
O9w—H91⋯O3 0.84 (1) 2.08 (5) 2.797 (4) 142 (8)
O9w—H92⋯O10w 0.85 (1) 2.12 (8) 2.759 (5) 132 (9)
O10w—H101⋯O7wvi 0.84 (1) 2.02 (2) 2.831 (4) 162 (4)
O10w—H102⋯O7vii 0.84 (1) 1.93 (2) 2.701 (3) 152 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [x, -y, z-{\script{1\over 2}}]; (vi) [x, -y+1, z-{\script{1\over 2}}]; (vii) x, y, z-1; (viii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

First-row transition metal dications form a plethora of metal dicarboxylates; in some cases, a a direct metal–carboxylate bond is formed and in other cases, the product consists of hexaaquametal cations and carboxylate ions, the anion interacting indirectly in an outer-sphere type of coordination. Thioacetic acid yields several metal carboxylates; the reaction of the deprotonated acid with cobalt(II) ions gives the hexaaquacobalt(II) di(carboxylato)cobaltate(II) (Scheme I, Fig. 1). The two CoII atoms in the salt exist in octahedral coordination environments. That in the cation is surrounded by water water molecules; that in the anion is O,S,O'-chelated by the thioacetate ligands. The cations, anions and lattice water molecules are linked by O···H···O into a three-dimensional network (Table 1). The salt is isostructural with the nickel(II) analog (Pan et al., 2005).

Related literature top

For the isotypic nickel(II) analog, see: Pan et al. (2005).

Experimental top

Cobalt diacetate (1 mmol) was added to an aqueous solution of thiodiacetic acid acid (1 mmol) that was earlier been treated with 1M sodium hydroxide to a pH of 6. The filtered solution was set aside for several days, after which pink prismatic crystals separated from solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and H···H 1.37±0.01 Å; their U values were set to 1.5Ueq(O).

The anisotropic displacement ellipsoids of the lattice water O atoms were restrained to be nearly isotropic.

The (5 9 9), (-5 9 - 9) (9 9 8) and (9 3 - 11) reflections were omitted owing to bad agreement.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Co(H2O)62+.Co(C4H4O4S)2–.4H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Hexaaquacobalt(II) bis(2,2'-sulfanediyldiacetato-κ3O,S,O')cobaltate(II) tetrahydrate top
Crystal data top
[Co(H2O)6][Co(C4H4O4S)2]·4H2OF(000) = 1224
Mr = 594.28Dx = 1.756 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 10500 reflections
a = 18.8627 (9) Åθ = 3.0–27.5°
b = 13.5779 (7) ŵ = 1.74 mm1
c = 8.9535 (4) ÅT = 293 K
β = 101.403 (1)°Prism, pink
V = 2247.87 (19) Å30.18 × 0.14 × 0.14 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4978 independent reflections
Radiation source: fine-focus sealed tube4802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2424
Tmin = 0.745, Tmax = 0.793k = 1717
10837 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0456P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4978 reflectionsΔρmax = 0.74 e Å3
331 parametersΔρmin = 0.58 e Å3
56 restraintsAbsolute structure: Flack (1983), 2402 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (1)
Crystal data top
[Co(H2O)6][Co(C4H4O4S)2]·4H2OV = 2247.87 (19) Å3
Mr = 594.28Z = 4
Monoclinic, CcMo Kα radiation
a = 18.8627 (9) ŵ = 1.74 mm1
b = 13.5779 (7) ÅT = 293 K
c = 8.9535 (4) Å0.18 × 0.14 × 0.14 mm
β = 101.403 (1)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4978 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4802 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.793Rint = 0.025
10837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.74 e Å3
S = 1.01Δρmin = 0.58 e Å3
4978 reflectionsAbsolute structure: Flack (1983), 2402 Friedel pairs
331 parametersAbsolute structure parameter: 0.02 (1)
56 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.500004 (19)0.23844 (2)0.50001 (4)0.02113 (8)
Co20.756568 (19)0.19476 (2)0.24733 (4)0.02289 (8)
S10.49039 (3)0.40580 (5)0.60363 (7)0.02473 (13)
S20.51526 (3)0.06991 (5)0.40430 (7)0.02585 (14)
O10.58222 (12)0.30010 (14)0.4126 (3)0.0343 (5)
O20.65276 (15)0.4269 (2)0.3849 (4)0.0643 (9)
O30.42627 (11)0.29204 (14)0.3183 (2)0.0302 (4)
O40.35388 (11)0.40998 (15)0.2070 (3)0.0346 (5)
O50.41625 (11)0.17334 (15)0.5790 (3)0.0328 (4)
O60.35800 (12)0.04251 (16)0.6378 (3)0.0415 (5)
O70.57090 (12)0.18662 (14)0.6866 (2)0.0335 (5)
O80.65760 (11)0.08440 (14)0.7929 (2)0.0317 (4)
O1W0.75186 (17)0.34735 (15)0.2392 (4)0.0485 (5)
H110.728 (2)0.380 (3)0.293 (5)0.073*
H120.782 (2)0.385 (3)0.211 (5)0.073*
O2W0.75883 (13)0.19813 (16)0.4850 (3)0.0376 (5)
H210.771 (2)0.2564 (10)0.510 (4)0.056*
H220.7864 (19)0.1600 (19)0.545 (4)0.056*
O3W0.75775 (13)0.04584 (14)0.2516 (4)0.0444 (5)
H310.7904 (18)0.013 (3)0.226 (6)0.067*
H320.7261 (18)0.010 (3)0.276 (6)0.067*
O4W0.75304 (12)0.19686 (15)0.0065 (3)0.0348 (5)
H410.751 (2)0.2540 (13)0.033 (4)0.052*
H420.7221 (18)0.162 (2)0.053 (4)0.052*
O5W0.86746 (11)0.19782 (15)0.2686 (3)0.0348 (5)
H510.8928 (18)0.201 (3)0.3561 (19)0.052*
H520.883 (2)0.237 (3)0.210 (3)0.052*
O6W0.64320 (11)0.19108 (14)0.2156 (3)0.0309 (4)
H610.631 (2)0.223 (3)0.287 (3)0.046*
H620.629 (2)0.221 (2)0.133 (2)0.046*
O7W0.71149 (19)0.6167 (2)0.3620 (4)0.0693 (8)
H710.712 (3)0.566 (3)0.414 (6)0.104*
H720.746 (2)0.616 (4)0.314 (5)0.104*
O8W0.81452 (15)0.64657 (18)0.1837 (3)0.0516 (6)
H810.832 (2)0.5909 (17)0.168 (6)0.077*
H820.8486 (16)0.682 (3)0.231 (5)0.077*
O9W0.45875 (19)0.2664 (5)0.0292 (4)0.1126 (15)
H910.456 (5)0.247 (6)0.117 (4)0.169*
H920.494 (4)0.237 (7)0.002 (9)0.169*
O10W0.59157 (12)0.2904 (2)0.0509 (3)0.0421 (5)
H1010.622 (2)0.329 (2)0.077 (4)0.063*
H1020.585 (2)0.242 (2)0.111 (4)0.063*
C10.60292 (15)0.3899 (2)0.4351 (4)0.0316 (6)
C20.56550 (18)0.4557 (2)0.5315 (4)0.0398 (7)
H2A0.54850.51360.47160.048*
H2B0.60150.47770.61790.048*
C30.41322 (17)0.4397 (2)0.4608 (4)0.0353 (7)
H3A0.37100.43860.50740.042*
H3B0.41980.50710.43070.042*
C40.39701 (13)0.37693 (18)0.3173 (3)0.0247 (5)
C50.40418 (15)0.0819 (2)0.5766 (3)0.0276 (5)
C60.44673 (16)0.0137 (2)0.4915 (3)0.0318 (6)
H6A0.41260.01970.41240.038*
H6B0.46980.03620.56220.038*
C70.60916 (13)0.11060 (19)0.6845 (3)0.0248 (5)
C80.59746 (16)0.0475 (2)0.5424 (3)0.0321 (6)
H8A0.59780.02100.57310.039*
H8B0.63820.05720.49250.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02393 (15)0.01925 (16)0.02064 (14)0.00472 (13)0.00543 (11)0.00147 (13)
Co20.02136 (14)0.02034 (16)0.02750 (15)0.00004 (12)0.00615 (12)0.00000 (13)
S10.0264 (3)0.0259 (3)0.0225 (3)0.0038 (2)0.0062 (2)0.0031 (2)
S20.0306 (3)0.0268 (3)0.0203 (3)0.0052 (2)0.0051 (2)0.0030 (2)
O10.0363 (10)0.0275 (10)0.0447 (11)0.0001 (8)0.0219 (9)0.0066 (8)
O20.0666 (17)0.0410 (14)0.104 (2)0.0081 (12)0.0631 (18)0.0073 (14)
O30.0382 (10)0.0246 (9)0.0259 (9)0.0114 (8)0.0019 (8)0.0031 (7)
O40.0375 (11)0.0308 (10)0.0320 (11)0.0121 (8)0.0018 (9)0.0002 (8)
O50.0366 (10)0.0242 (9)0.0430 (11)0.0008 (8)0.0213 (9)0.0030 (9)
O60.0427 (11)0.0304 (11)0.0578 (14)0.0002 (9)0.0252 (10)0.0057 (10)
O70.0432 (11)0.0285 (10)0.0254 (9)0.0162 (8)0.0017 (8)0.0049 (8)
O80.0317 (10)0.0308 (10)0.0290 (11)0.0083 (8)0.0026 (8)0.0004 (8)
O1W0.0592 (13)0.0229 (10)0.0758 (16)0.0026 (11)0.0435 (12)0.0015 (12)
O2W0.0467 (12)0.0348 (11)0.0289 (10)0.0014 (9)0.0018 (10)0.0009 (8)
O3W0.0284 (9)0.0185 (9)0.0899 (16)0.0008 (8)0.0198 (10)0.0002 (12)
O4W0.0392 (11)0.0359 (12)0.0292 (10)0.0013 (8)0.0064 (9)0.0026 (8)
O5W0.0235 (9)0.0429 (12)0.0384 (12)0.0063 (8)0.0072 (9)0.0058 (9)
O6W0.0275 (10)0.0327 (10)0.0327 (10)0.0042 (8)0.0065 (9)0.0027 (8)
O7W0.087 (2)0.0499 (15)0.078 (2)0.0073 (15)0.0313 (17)0.0139 (14)
O8W0.0566 (14)0.0336 (12)0.0609 (16)0.0021 (10)0.0030 (12)0.0041 (11)
O9W0.0498 (17)0.246 (4)0.0406 (16)0.022 (2)0.0068 (15)0.022 (2)
O10W0.0409 (11)0.0512 (13)0.0338 (11)0.0057 (10)0.0065 (10)0.0110 (10)
C10.0323 (14)0.0249 (13)0.0419 (16)0.0005 (11)0.0180 (13)0.0007 (11)
C20.0387 (15)0.0305 (15)0.055 (2)0.0056 (12)0.0212 (14)0.0114 (14)
C30.0349 (14)0.0317 (14)0.0363 (16)0.0129 (11)0.0000 (13)0.0073 (12)
C40.0259 (12)0.0232 (11)0.0253 (12)0.0035 (9)0.0061 (10)0.0003 (10)
C50.0295 (12)0.0253 (12)0.0275 (13)0.0035 (10)0.0041 (11)0.0021 (10)
C60.0416 (15)0.0213 (12)0.0339 (14)0.0011 (10)0.0112 (12)0.0018 (10)
C70.0238 (11)0.0230 (11)0.0276 (13)0.0032 (9)0.0053 (11)0.0000 (10)
C80.0319 (13)0.0335 (14)0.0282 (14)0.0124 (11)0.0007 (11)0.0077 (11)
Geometric parameters (Å, º) top
Co1—O72.0472 (19)O3W—H310.831 (11)
Co1—O12.049 (2)O3W—H320.830 (11)
Co1—O32.0532 (19)O4W—H410.851 (11)
Co1—O52.054 (2)O4W—H420.850 (11)
Co1—S12.4746 (7)O5W—H510.834 (11)
Co1—S22.4801 (7)O5W—H520.835 (11)
Co2—O3W2.0224 (19)O6W—H610.834 (11)
Co2—O5W2.063 (2)O6W—H620.840 (11)
Co2—O1W2.075 (2)O7W—H710.834 (11)
Co2—O6W2.101 (2)O7W—H720.841 (11)
Co2—O2W2.120 (2)O8W—H810.847 (11)
Co2—O4W2.145 (2)O8W—H820.844 (11)
S1—C31.797 (3)O9W—H910.843 (11)
S1—C21.802 (3)O9W—H920.845 (11)
S2—C81.807 (3)O10W—H1010.843 (11)
S2—C61.806 (3)O10W—H1020.839 (11)
O1—C11.283 (3)C1—C21.511 (4)
O2—C11.227 (4)C2—H2A0.9700
O3—C41.277 (3)C2—H2B0.9700
O4—C41.233 (3)C3—C41.522 (4)
O5—C51.261 (4)C3—H3A0.9700
O6—C51.238 (4)C3—H3B0.9700
O7—C71.262 (3)C5—C61.525 (4)
O8—C71.246 (3)C6—H6A0.9700
O1W—H110.843 (11)C6—H6B0.9700
O1W—H120.843 (11)C7—C81.514 (4)
O2W—H210.843 (11)C8—H8A0.9700
O2W—H220.845 (11)C8—H8B0.9700
O7—Co1—O191.74 (10)Co2—O4W—H41115 (3)
O7—Co1—O3177.79 (10)Co2—O4W—H42120 (3)
O1—Co1—O389.88 (9)H41—O4W—H42106 (2)
O7—Co1—O589.64 (10)Co2—O5W—H51118 (3)
O1—Co1—O5177.55 (10)Co2—O5W—H52115 (3)
O3—Co1—O588.79 (9)H51—O5W—H52111 (2)
O7—Co1—S195.40 (6)Co2—O6W—H61108 (3)
O1—Co1—S183.40 (6)Co2—O6W—H62104 (3)
O3—Co1—S183.29 (5)H61—O6W—H62110 (2)
O5—Co1—S198.49 (6)H71—O7W—H72111 (5)
O7—Co1—S282.13 (5)H81—O8W—H82108 (2)
O1—Co1—S295.56 (6)H91—O9W—H92109 (9)
O3—Co1—S299.21 (6)H101—O10W—H102109 (2)
O5—Co1—S282.63 (6)O2—C1—O1124.3 (3)
S1—Co1—S2177.30 (3)O2—C1—C2116.4 (3)
O3W—Co2—O5W90.64 (9)O1—C1—C2119.3 (3)
O3W—Co2—O1W178.12 (12)C1—C2—S1118.1 (2)
O5W—Co2—O1W91.07 (10)C1—C2—H2A107.8
O3W—Co2—O6W89.20 (8)S1—C2—H2A107.8
O5W—Co2—O6W177.57 (10)C1—C2—H2B107.8
O1W—Co2—O6W89.06 (10)S1—C2—H2B107.8
O3W—Co2—O2W90.26 (12)H2A—C2—H2B107.1
O5W—Co2—O2W95.05 (9)C4—C3—S1117.2 (2)
O1W—Co2—O2W90.35 (11)C4—C3—H3A108.0
O6W—Co2—O2W87.38 (9)S1—C3—H3A108.0
O3W—Co2—O4W91.75 (12)C4—C3—H3B108.0
O5W—Co2—O4W85.52 (9)S1—C3—H3B108.0
O1W—Co2—O4W87.63 (11)H3A—C3—H3B107.2
O6W—Co2—O4W92.06 (9)O4—C4—O3123.4 (2)
O2W—Co2—O4W177.91 (8)O4—C4—C3117.6 (2)
C3—S1—C2103.43 (17)O3—C4—C3119.0 (2)
C3—S1—Co194.45 (10)O6—C5—O5123.9 (3)
C2—S1—Co195.16 (10)O6—C5—C6116.4 (2)
C8—S2—C6102.94 (15)O5—C5—C6119.7 (3)
C8—S2—Co193.51 (9)C5—C6—S2116.86 (19)
C6—S2—Co195.67 (9)C5—C6—H6A108.1
C1—O1—Co1123.92 (19)S2—C6—H6A108.1
C4—O3—Co1123.34 (17)C5—C6—H6B108.1
C5—O5—Co1124.48 (19)S2—C6—H6B108.1
C7—O7—Co1123.53 (18)H6A—C6—H6B107.3
Co2—O1W—H11122 (4)O8—C7—O7123.7 (3)
Co2—O1W—H12126 (4)O8—C7—C8117.1 (2)
H11—O1W—H12108 (2)O7—C7—C8119.1 (2)
Co2—O2W—H21104 (3)C7—C8—S2116.28 (18)
Co2—O2W—H22121 (3)C7—C8—H8A108.2
H21—O2W—H22108 (2)S2—C8—H8A108.2
Co2—O3W—H31123 (3)C7—C8—H8B108.2
Co2—O3W—H32126 (3)S2—C8—H8B108.2
H31—O3W—H32111 (2)H8A—C8—H8B107.4
O7—Co1—S1—C3167.18 (14)O1—Co1—O7—C778.5 (2)
O1—Co1—S1—C3101.68 (14)O5—Co1—O7—C799.5 (2)
O3—Co1—S1—C311.02 (13)S1—Co1—O7—C7162.0 (2)
O5—Co1—S1—C376.74 (14)S2—Co1—O7—C716.9 (2)
O7—Co1—S1—C288.87 (14)Co1—O1—C1—O2178.9 (3)
O1—Co1—S1—C22.26 (14)Co1—O1—C1—C20.1 (4)
O3—Co1—S1—C292.93 (14)O2—C1—C2—S1178.4 (3)
O5—Co1—S1—C2179.32 (14)O1—C1—C2—S12.7 (4)
O7—Co1—S2—C817.84 (13)C3—S1—C2—C192.7 (3)
O1—Co1—S2—C873.15 (13)Co1—S1—C2—C13.2 (3)
O3—Co1—S2—C8163.94 (13)C2—S1—C3—C479.5 (3)
O5—Co1—S2—C8108.50 (13)Co1—S1—C3—C416.9 (3)
O7—Co1—S2—C685.55 (12)Co1—O3—C4—O4178.4 (2)
O1—Co1—S2—C6176.55 (12)Co1—O3—C4—C34.2 (4)
O3—Co1—S2—C692.67 (12)S1—C3—C4—O4165.9 (2)
O5—Co1—S2—C65.11 (12)S1—C3—C4—O316.6 (4)
O7—Co1—O1—C193.6 (2)Co1—O5—C5—O6172.7 (2)
O3—Co1—O1—C184.9 (2)Co1—O5—C5—C68.8 (4)
S1—Co1—O1—C11.6 (2)O6—C5—C6—S2179.0 (2)
S2—Co1—O1—C1175.9 (2)O5—C5—C6—S22.3 (4)
O1—Co1—O3—C489.2 (2)C8—S2—C6—C598.2 (2)
O5—Co1—O3—C492.9 (2)Co1—S2—C6—C53.3 (2)
S1—Co1—O3—C45.8 (2)Co1—O7—C7—O8172.3 (2)
S2—Co1—O3—C4175.2 (2)Co1—O7—C7—C86.5 (4)
O7—Co1—O5—C573.5 (2)O8—C7—C8—S2166.7 (2)
O3—Co1—O5—C5108.1 (2)O7—C7—C8—S214.4 (4)
S1—Co1—O5—C5168.9 (2)C6—S2—C8—C775.0 (3)
S2—Co1—O5—C58.6 (2)Co1—S2—C8—C721.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O20.84 (1)1.89 (2)2.707 (4)162 (5)
O1w—H12···O6i0.84 (1)1.95 (1)2.791 (4)173 (5)
O2w—H21···O8wii0.84 (1)2.08 (2)2.824 (3)147 (3)
O2w—H22···O4iii0.85 (1)1.98 (1)2.813 (3)170 (4)
O3w—H31···O4iv0.83 (1)1.87 (2)2.671 (3)163 (5)
O3w—H32···O8v0.83 (1)1.85 (2)2.666 (3)168 (5)
O4w—H41···O7wvi0.85 (1)2.06 (2)2.880 (4)162 (4)
O4w—H42···O8vii0.85 (1)1.96 (1)2.805 (3)173 (4)
O5w—H51···O9wiii0.83 (1)1.84 (2)2.657 (4)166 (3)
O5w—H52···O5i0.84 (1)1.89 (1)2.721 (3)179 (5)
O6w—H61···O10.83 (1)1.91 (2)2.726 (3)166 (4)
O6w—H62···O10w0.84 (1)1.91 (1)2.746 (3)177 (4)
O7w—H71···O20.83 (1)2.18 (4)2.828 (4)135 (5)
O7w—H72···O8w0.84 (1)1.96 (2)2.777 (4)165 (5)
O8w—H81···O6i0.85 (1)1.91 (1)2.751 (3)172 (5)
O8w—H82···O3viii0.84 (1)2.13 (1)2.965 (3)168 (4)
O9w—H91···O30.84 (1)2.08 (5)2.797 (4)142 (8)
O9w—H92···O10w0.85 (1)2.12 (8)2.759 (5)132 (9)
O10w—H101···O7wvi0.84 (1)2.02 (2)2.831 (4)162 (4)
O10w—H102···O7vii0.84 (1)1.93 (2)2.701 (3)152 (4)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x, y, z1/2; (vi) x, y+1, z1/2; (vii) x, y, z1; (viii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co(H2O)6][Co(C4H4O4S)2]·4H2O
Mr594.28
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)18.8627 (9), 13.5779 (7), 8.9535 (4)
β (°) 101.403 (1)
V3)2247.87 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.18 × 0.14 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.745, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
10837, 4978, 4802
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.01
No. of reflections4978
No. of parameters331
No. of restraints56
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.58
Absolute structureFlack (1983), 2402 Friedel pairs
Absolute structure parameter0.02 (1)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O20.84 (1)1.89 (2)2.707 (4)162 (5)
O1w—H12···O6i0.84 (1)1.95 (1)2.791 (4)173 (5)
O2w—H21···O8wii0.84 (1)2.08 (2)2.824 (3)147 (3)
O2w—H22···O4iii0.85 (1)1.98 (1)2.813 (3)170 (4)
O3w—H31···O4iv0.83 (1)1.87 (2)2.671 (3)163 (5)
O3w—H32···O8v0.83 (1)1.85 (2)2.666 (3)168 (5)
O4w—H41···O7wvi0.85 (1)2.06 (2)2.880 (4)162 (4)
O4w—H42···O8vii0.85 (1)1.96 (1)2.805 (3)173 (4)
O5w—H51···O9wiii0.83 (1)1.84 (2)2.657 (4)166 (3)
O5w—H52···O5i0.84 (1)1.89 (1)2.721 (3)179 (5)
O6w—H61···O10.83 (1)1.91 (2)2.726 (3)166 (4)
O6w—H62···O10w0.84 (1)1.91 (1)2.746 (3)177 (4)
O7w—H71···O20.83 (1)2.18 (4)2.828 (4)135 (5)
O7w—H72···O8w0.84 (1)1.96 (2)2.777 (4)165 (5)
O8w—H81···O6i0.85 (1)1.91 (1)2.751 (3)172 (5)
O8w—H82···O3viii0.84 (1)2.13 (1)2.965 (3)168 (4)
O9w—H91···O30.84 (1)2.08 (5)2.797 (4)142 (8)
O9w—H92···O10w0.85 (1)2.12 (8)2.759 (5)132 (9)
O10w—H101···O7wvi0.84 (1)2.02 (2)2.831 (4)162 (4)
O10w—H102···O7vii0.84 (1)1.93 (2)2.701 (3)152 (4)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x, y, z1/2; (vi) x, y+1, z1/2; (vii) x, y, z1; (viii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPan, T.-T., Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. E61, m1376–m1378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds