organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­methyl­anilinium chloride monohydrate

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, bDepartment of Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: talei3@gmail.com

(Received 7 October 2011; accepted 21 October 2011; online 29 October 2011)

The crystal structure of the title salt, C8H12N+·Cl·H2O, consists of discrete organic cations, chloride anions and water mol­ecules which are connected by N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds. These inter­actions lead to the formation of layers lying parallel to the ab plane.

Related literature

For related structures, see: Dai & Chen (2010[Dai, J. & Chen, X.-Y. (2010). Acta Cryst. E66, o3295.]); Abid et al. (2007[Abid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117.]). For hydrogen bonds, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Jayaraman et al. (2002[Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413-422.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·Cl·H2O

  • Mr = 175.65

  • Orthorhombic, P 21 21 21

  • a = 7.4910 (15) Å

  • b = 7.5031 (15) Å

  • c = 17.430 (4) Å

  • V = 979.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 K

  • 0.45 × 0.4 × 0.2 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 4645 measured reflections

  • 2616 independent reflections

  • 2095 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.03

  • 2616 reflections

  • 122 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1088 Friedel pairs

  • Flack parameter: 0.13 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.95 (2) 2.21 (2) 3.1581 (17) 172.6 (17)
N1—H1B⋯O1 0.89 (3) 1.83 (3) 2.711 (2) 170 (2)
N1—H1C⋯Cl1ii 0.80 (2) 2.41 (2) 3.1964 (17) 171 (2)
O1—H1W⋯Cl1iii 0.82 (2) 2.35 (2) 3.1578 (19) 169 (3)
O1—H2W⋯Cl1 0.82 (2) 2.39 (2) 3.1920 (18) 168 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrogen bonding is of interest because of their prevalent occurrence in biological systems. Therefore, it is extremely useful to search simple molecules allowing to understanding the configuration and the function of some complex macromolecules. Furthermore, the hybrid materials are wealthy in H-bonds and they could be used to this outcome because of their capability emphasis in constructing sophisticated assemblies from isolated molecular or ionic building blocks due to its strength and directionality (Steiner, 2002; Jayaraman et al., 2002).

As shown in Fig. 1, the asymmetric unit of (I) contains a 2,3-dimethylanilinium cation, a chloride anion and a water molecule. Packing diagram of the structure across the a-axis is shown in Fig. 2. It shows that each chloride anion connected to two 2,3-dimethylanilinium cations via N—H···Cl hydrogen bonds and two water molecules. The title complex is a crystalline hydrate containing one water of crystallization, where form layers through N—H···O and O—H···Cl hydrogen bonds (Table 1).

The C—NH3, 1.465 (2) Å distance in the organic cations are close to respect to the C—NH3, 1.459 (2) Å observed in the crystal structure of 2,3-dimethylaniliniumchloride (Dai & Chen, 2010). Moreover the organic group moiety geometrical features shows the C—C—C and C—C—N angles are in the range usually found for this compound (Abid et al., 2007). The N—H···Cl and O—H···Cl hydrogen bond lengths are in the ranges of 2.21 (2)–2.41 (2) Å and 2.348 (18)–2.39 (2) Å, respectively. The organic species interact also with a strong N—H···O hydrogen bond with H···O separation of 1.83 (3) Å. Hydrogen bonds, electrostatic and van der Waals interactions participate to the cohesion of the three-dimensional network and add stability to this compound.

Related literature top

For related structures, see: Dai & Chen (2010); Abid et al. (2007). For hydrogen bonds, see: Steiner (2002); Jayaraman et al. (2002).

Experimental top

An initial solution of 2,3-dimetylaniline was made in 10 ml methanol. To a crystallizer vessel initial solution was added in a 1:1 molar ratio of concentrated hydrochloric acid dropwise. For salt formation partnership, the obtained solution was stirrer for 1 h and then gradually evaporated in room temperature. Crystals of the title salt were removed from the crystallizer vessel to yield colorless crystals of the title salt, suitable for X-ray analysis.

Refinement top

The H atoms of the protonated nitrogen and water molecule were found in difference Fourier map and refined isotropically. The water H atoms H1W, H2W were refined with distance restraints of O—H 0.844 (2), 0.860 (2) Å, respectively. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H groups and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl group.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound showing the intermolecular N—H···O, N—H···Cl and O—H···Cl hydrogen bonds as dashed lines.
2,3-Dimethylanilinium chloride monohydrate top
Crystal data top
C8H12N+·Cl·H2OF(000) = 376.0
Mr = 175.65Dx = 1.191 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2616 reflections
a = 7.4910 (15) Åθ = 2.3–29.2°
b = 7.5031 (15) ŵ = 0.34 mm1
c = 17.430 (4) ÅT = 298 K
V = 979.7 (4) Å3Block, colourless
Z = 40.45 × 0.4 × 0.2 mm
Data collection top
Stoe IPDS 2T
diffractometer
2095 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 29.2°, θmin = 2.3°
Detector resolution: 0.15 pixels mm-1h = 108
rotation method scansk = 108
4645 measured reflectionsl = 2320
2616 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.048P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2616 reflectionsΔρmax = 0.20 e Å3
122 parametersΔρmin = 0.16 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1088 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (9)
Crystal data top
C8H12N+·Cl·H2OV = 979.7 (4) Å3
Mr = 175.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4910 (15) ŵ = 0.34 mm1
b = 7.5031 (15) ÅT = 298 K
c = 17.430 (4) Å0.45 × 0.4 × 0.2 mm
Data collection top
Stoe IPDS 2T
diffractometer
2095 reflections with I > 2σ(I)
4645 measured reflectionsRint = 0.031
2616 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104Δρmax = 0.20 e Å3
S = 1.03Δρmin = 0.16 e Å3
2616 reflectionsAbsolute structure: Flack (1983), with 1088 Friedel pairs
122 parametersAbsolute structure parameter: 0.13 (9)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3476 (2)0.2420 (2)0.73382 (12)0.0800 (5)
Cl10.76090 (5)0.33674 (6)0.75167 (3)0.06069 (15)
N10.1163 (2)0.4774 (2)0.67017 (9)0.0491 (3)
C20.2579 (2)0.5132 (2)0.54351 (9)0.0463 (3)
C10.1057 (2)0.4777 (2)0.58624 (11)0.0446 (4)
C60.0577 (3)0.4395 (3)0.55285 (12)0.0621 (5)
H60.15720.41470.58290.075*
C30.2418 (3)0.5139 (2)0.46329 (11)0.0571 (4)
C70.4338 (3)0.5486 (4)0.58231 (14)0.0649 (5)
H7A0.48850.43750.59620.097*
H7B0.41440.61870.62760.097*
H7C0.51090.61230.54790.097*
C50.0691 (3)0.4392 (4)0.47360 (14)0.0780 (7)
H50.17710.41340.44970.094*
C80.4007 (4)0.5513 (4)0.41222 (15)0.0825 (8)
H8A0.36270.55470.35960.124*
H8B0.48800.45880.41870.124*
H8C0.45220.66400.42590.124*
C40.0778 (4)0.4766 (3)0.43060 (13)0.0709 (6)
H40.06760.47710.37740.085*
H1C0.021 (3)0.451 (3)0.6876 (13)0.060 (6)*
H1A0.147 (3)0.591 (3)0.6905 (11)0.052 (5)*
H1B0.198 (3)0.400 (4)0.6859 (13)0.079 (8)*
H1W0.331 (4)0.134 (2)0.7337 (15)0.088 (9)*
H2W0.456 (3)0.257 (6)0.7323 (19)0.131 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0518 (8)0.0643 (9)0.1239 (15)0.0014 (7)0.0103 (9)0.0200 (10)
Cl10.0443 (2)0.0566 (2)0.0812 (3)0.00063 (17)0.0040 (3)0.0132 (2)
N10.0374 (7)0.0507 (8)0.0594 (9)0.0041 (6)0.0022 (6)0.0012 (7)
C20.0419 (8)0.0394 (7)0.0576 (9)0.0017 (8)0.0004 (8)0.0003 (6)
C10.0398 (7)0.0380 (8)0.0561 (9)0.0005 (7)0.0032 (7)0.0018 (7)
C60.0409 (8)0.0708 (12)0.0747 (12)0.0062 (8)0.0069 (8)0.0036 (10)
C30.0653 (11)0.0487 (9)0.0572 (10)0.0009 (11)0.0005 (10)0.0004 (7)
C70.0406 (9)0.0825 (14)0.0716 (12)0.0129 (9)0.0035 (9)0.0003 (11)
C50.0602 (12)0.0918 (17)0.0822 (15)0.0073 (12)0.0260 (11)0.0093 (13)
C80.0918 (18)0.0905 (18)0.0652 (13)0.0146 (15)0.0186 (13)0.0035 (14)
C40.0820 (15)0.0731 (14)0.0576 (12)0.0029 (12)0.0156 (10)0.0011 (10)
Geometric parameters (Å, º) top
O1—H1W0.820 (17)C3—C41.383 (3)
O1—H2W0.820 (18)C3—C81.512 (3)
N1—C11.465 (2)C7—H7A0.9600
N1—H1C0.80 (2)C7—H7B0.9600
N1—H1A0.95 (2)C7—H7C0.9600
N1—H1B0.89 (3)C5—C41.361 (3)
C2—C11.388 (2)C5—H50.9300
C2—C31.404 (2)C8—H8A0.9600
C2—C71.505 (3)C8—H8B0.9600
C1—C61.385 (2)C8—H8C0.9600
C6—C51.384 (3)C4—H40.9300
C6—H60.9300
H1W—O1—H2W107 (4)C2—C7—H7A109.5
C1—N1—H1C109.4 (16)C2—C7—H7B109.5
C1—N1—H1A112.5 (11)H7A—C7—H7B109.5
H1C—N1—H1A107 (2)C2—C7—H7C109.5
C1—N1—H1B110.2 (15)H7A—C7—H7C109.5
H1C—N1—H1B110 (2)H7B—C7—H7C109.5
H1A—N1—H1B108 (2)C4—C5—C6120.0 (2)
C1—C2—C3117.70 (16)C4—C5—H5120.0
C1—C2—C7120.81 (15)C6—C5—H5120.0
C3—C2—C7121.49 (16)C3—C8—H8A109.5
C6—C1—C2122.69 (18)C3—C8—H8B109.5
C6—C1—N1117.83 (17)H8A—C8—H8B109.5
C2—C1—N1119.47 (15)C3—C8—H8C109.5
C5—C6—C1118.3 (2)H8A—C8—H8C109.5
C5—C6—H6120.8H8B—C8—H8C109.5
C1—C6—H6120.8C5—C4—C3122.2 (2)
C4—C3—C2119.08 (19)C5—C4—H4118.9
C4—C3—C8119.6 (2)C3—C4—H4118.9
C2—C3—C8121.29 (19)
C3—C2—C1—C61.5 (3)C7—C2—C3—C4178.6 (2)
C7—C2—C1—C6178.15 (18)C1—C2—C3—C8180.0 (2)
C3—C2—C1—N1179.41 (16)C7—C2—C3—C80.3 (3)
C7—C2—C1—N10.9 (3)C1—C6—C5—C40.3 (4)
C2—C1—C6—C50.8 (3)C6—C5—C4—C30.7 (4)
N1—C1—C6—C5179.9 (2)C2—C3—C4—C50.0 (4)
C1—C2—C3—C41.1 (3)C8—C3—C4—C5178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.95 (2)2.21 (2)3.1581 (17)172.6 (17)
N1—H1B···O10.89 (3)1.83 (3)2.711 (2)170 (2)
N1—H1C···Cl1ii0.80 (2)2.41 (2)3.1964 (17)171 (2)
O1—H1W···Cl1iii0.82 (2)2.35 (2)3.1578 (19)169 (3)
O1—H2W···Cl10.82 (2)2.39 (2)3.1920 (18)168 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H12N+·Cl·H2O
Mr175.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.4910 (15), 7.5031 (15), 17.430 (4)
V3)979.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.45 × 0.4 × 0.2
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4645, 2616, 2095
Rint0.031
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.03
No. of reflections2616
No. of parameters122
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.16
Absolute structureFlack (1983), with 1088 Friedel pairs
Absolute structure parameter0.13 (9)

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.95 (2)2.21 (2)3.1581 (17)172.6 (17)
N1—H1B···O10.89 (3)1.83 (3)2.711 (2)170 (2)
N1—H1C···Cl1ii0.80 (2)2.41 (2)3.1964 (17)171 (2)
O1—H1W···Cl1iii0.820 (17)2.348 (18)3.1578 (19)169 (3)
O1—H2W···Cl10.820 (18)2.39 (2)3.1920 (18)168 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge Islamic Azad University, Karaj Branch, for financial support.

References

First citationAbid, S., Hemissi, H. & Rzaigui, M. (2007). Acta Cryst. E63, o3117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDai, J. & Chen, X.-Y. (2010). Acta Cryst. E66, o3295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds