organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-methyl­benzyl­­idene)benzene-1,4-di­amine

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: hhf_2222@yahoo.com.cn

(Received 8 October 2011; accepted 10 October 2011; online 12 October 2011)

The centrosymmetric title compound, C22H20N2, crystallizes with one half-mol­ecule in the asymmetric unit. The dihedral angle between the central and outer benzene rings is 46.2 (2)°.

Related literature

For the use of Schiff bases as ligands in metal complexes, see: Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2

  • Mr = 312.40

  • Monoclinic, P 21 /c

  • a = 6.4750 (6) Å

  • b = 7.1561 (8) Å

  • c = 19.594 (2) Å

  • β = 107.555 (1)°

  • V = 865.61 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.46 × 0.40 × 0.37 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.974

  • 4151 measured reflections

  • 1532 independent reflections

  • 844 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.145

  • S = 1.04

  • 1532 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases containing the CN bond have been receiving considerable attention for many years, primarily due to their importance as ligands in metal complexes with special biological (May et al., 2004), and catalytic properties (Chen et al., 2008).

As a part of our studies on synthesis and structural peculiarities of Schiff bases derived from 1,4-benzenediamine and 4-methyl benzaldehyde, we determined the structure of the title compound (Fig. 1). The molecule includes two C N bonds, which are coplanar. The distance between the C atom and the N atom in the CN bond is 1.266 (2) Å. In the structure the dihedral angle between adjacent benzene rings planes is 46.2 (2)°.

Related literature top

For the use of Schiff bases as ligands in metal complexes, see: Chen et al. (2008); May et al. (2004).

Experimental top

1,4-benzenediamine (0.324 g, 3 mmol) was added dropwise with stirring at 273K to a solution of 4-methyl benzaldehyde (0.721 g, 6 mmol) in ethanol. The mixture were warmed to room temperature and stirred for 2 h. The reaction mixture was filtered and the filter cake was recrystallized from ethanol (yield 75%). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a tetrahydrofuran solution.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å), and refined as riding with Uiso(H) = 1.2Ueq or 1.5Ueq (methyl H atoms).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
N,N'-Bis(4-methylbenzylidene)benzene-1,4-diamine top
Crystal data top
C22H20N2F(000) = 332
Mr = 312.40Dx = 1.199 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.4750 (6) ÅCell parameters from 954 reflections
b = 7.1561 (8) Åθ = 2.9–23.3°
c = 19.594 (2) ŵ = 0.07 mm1
β = 107.555 (1)°T = 293 K
V = 865.61 (16) Å3Block, colorless
Z = 20.46 × 0.40 × 0.37 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1532 independent reflections
Radiation source: fine-focus sealed tube844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.968, Tmax = 0.974k = 86
4151 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1422P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1532 reflectionsΔρmax = 0.13 e Å3
111 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.069 (8)
Crystal data top
C22H20N2V = 865.61 (16) Å3
Mr = 312.40Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.4750 (6) ŵ = 0.07 mm1
b = 7.1561 (8) ÅT = 293 K
c = 19.594 (2) Å0.46 × 0.40 × 0.37 mm
β = 107.555 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1532 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
844 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.974Rint = 0.034
4151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
1532 reflectionsΔρmin = 0.17 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3167 (3)0.4579 (2)0.61261 (9)0.0604 (6)
C10.4131 (3)0.4803 (3)0.55707 (11)0.0543 (6)
C20.2944 (3)0.5650 (3)0.49390 (11)0.0604 (6)
H20.15540.60840.48910.072*
C30.6190 (3)0.4146 (3)0.56201 (11)0.0602 (6)
H30.70020.35580.60380.072*
C40.4309 (4)0.4832 (3)0.67687 (11)0.0558 (6)
H40.57340.52260.68570.067*
C50.3491 (3)0.4533 (3)0.73774 (11)0.0504 (5)
C60.4766 (4)0.4939 (3)0.80622 (11)0.0609 (6)
H60.61670.53810.81350.073*
C70.3996 (4)0.4699 (3)0.86443 (12)0.0678 (7)
H70.48890.49820.91010.081*
C80.1925 (4)0.4049 (3)0.85571 (12)0.0621 (6)
C90.0668 (4)0.3596 (3)0.78732 (13)0.0645 (6)
H90.07230.31340.78020.077*
C100.1436 (3)0.3814 (3)0.72947 (12)0.0609 (6)
H100.05640.34760.68410.073*
C110.1042 (5)0.3887 (4)0.91853 (13)0.0913 (9)
H11A0.22110.36570.96140.137*
H11B0.00280.28720.91050.137*
H11C0.03260.50300.92360.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0561 (12)0.0671 (13)0.0566 (11)0.0008 (9)0.0150 (10)0.0079 (9)
C10.0510 (14)0.0562 (13)0.0538 (13)0.0039 (10)0.0131 (11)0.0040 (10)
C20.0483 (13)0.0689 (15)0.0620 (14)0.0065 (10)0.0137 (11)0.0091 (11)
C30.0513 (14)0.0707 (15)0.0540 (13)0.0037 (11)0.0090 (11)0.0118 (11)
C40.0535 (14)0.0499 (13)0.0631 (14)0.0004 (10)0.0162 (12)0.0037 (10)
C50.0527 (13)0.0424 (11)0.0553 (13)0.0031 (9)0.0153 (11)0.0031 (9)
C60.0574 (14)0.0571 (14)0.0659 (15)0.0033 (10)0.0151 (12)0.0020 (11)
C70.0766 (17)0.0665 (15)0.0560 (14)0.0031 (12)0.0137 (13)0.0026 (11)
C80.0741 (16)0.0499 (13)0.0678 (15)0.0103 (12)0.0299 (13)0.0089 (11)
C90.0597 (15)0.0599 (14)0.0774 (16)0.0007 (11)0.0261 (13)0.0070 (12)
C100.0555 (14)0.0619 (14)0.0609 (14)0.0018 (11)0.0113 (11)0.0006 (11)
C110.114 (2)0.0928 (19)0.0806 (18)0.0107 (17)0.0488 (17)0.0172 (14)
Geometric parameters (Å, º) top
N1—C41.266 (2)C6—C71.387 (3)
N1—C11.418 (3)C6—H60.9300
C1—C21.384 (3)C7—C81.380 (3)
C1—C31.389 (3)C7—H70.9300
C2—C3i1.381 (3)C8—C91.380 (3)
C2—H20.9300C8—C111.510 (3)
C3—C2i1.381 (3)C9—C101.377 (3)
C3—H30.9300C9—H90.9300
C4—C51.459 (3)C10—H100.9300
C4—H40.9300C11—H11A0.9600
C5—C61.378 (3)C11—H11B0.9600
C5—C101.390 (3)C11—H11C0.9600
C4—N1—C1119.14 (19)C8—C7—C6121.1 (2)
C2—C1—C3118.22 (19)C8—C7—H7119.4
C2—C1—N1118.79 (19)C6—C7—H7119.4
C3—C1—N1122.94 (19)C7—C8—C9117.8 (2)
C3i—C2—C1120.5 (2)C7—C8—C11121.2 (2)
C3i—C2—H2119.8C9—C8—C11121.1 (2)
C1—C2—H2119.8C10—C9—C8121.3 (2)
C2i—C3—C1121.3 (2)C10—C9—H9119.4
C2i—C3—H3119.3C8—C9—H9119.4
C1—C3—H3119.3C9—C10—C5121.1 (2)
N1—C4—C5123.0 (2)C9—C10—H10119.4
N1—C4—H4118.5C5—C10—H10119.4
C5—C4—H4118.5C8—C11—H11A109.5
C6—C5—C10117.6 (2)C8—C11—H11B109.5
C6—C5—C4120.4 (2)H11A—C11—H11B109.5
C10—C5—C4122.0 (2)C8—C11—H11C109.5
C5—C6—C7121.1 (2)H11A—C11—H11C109.5
C5—C6—H6119.5H11B—C11—H11C109.5
C7—C6—H6119.5
C4—N1—C1—C2140.7 (2)C4—C5—C6—C7178.63 (19)
C4—N1—C1—C341.9 (3)C5—C6—C7—C80.1 (3)
C3—C1—C2—C3i0.9 (3)C6—C7—C8—C91.8 (3)
N1—C1—C2—C3i178.49 (19)C6—C7—C8—C11176.6 (2)
C2—C1—C3—C2i0.9 (4)C7—C8—C9—C101.1 (3)
N1—C1—C3—C2i178.39 (19)C11—C8—C9—C10177.3 (2)
C1—N1—C4—C5176.51 (17)C8—C9—C10—C51.2 (3)
N1—C4—C5—C6176.06 (19)C6—C5—C10—C92.8 (3)
N1—C4—C5—C104.8 (3)C4—C5—C10—C9178.00 (19)
C10—C5—C6—C72.2 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H20N2
Mr312.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.4750 (6), 7.1561 (8), 19.594 (2)
β (°) 107.555 (1)
V3)865.61 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.46 × 0.40 × 0.37
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
4151, 1532, 844
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.145, 1.04
No. of reflections1532
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was carried out under the sponsorship of the ShanXi scientific technology project (20110321044).

References

First citationBruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds