organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Bromo­phen­yl)-N,N-di­methyl-3-oxopropan-1-aminium chloride

aDepartamento de Química, Universidad del Valle, AA 25360 Cali, Colombia, and bUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: rodrigo.abonia@correounivalle.edu.co

(Received 10 October 2011; accepted 11 October 2011; online 22 October 2011)

The title compound, C11H15BrNO+·Cl, was obtained as a precursor within our current program for the synthesis of new β-amino­alcohols via a Mannich-type reaction. The protonated amino N atom is hydrogen bonded to the chloride anion. With exception of one methyl group, the cation is approximately planar (r.m.s. deviation for all non H-atoms = 0.069 Å).

Related literature

For (N,N-dialkyl­amino)­propiophenones, see: Alper et al. (2002[Alper, K., Barry, J. & Balabanov, A. (2002). Epilepsy Behav. 3, 13-18.]); Pupo et al. (2003[Pupo, A., Uberti, M. & Minneman, K. (2003). Eur. J. Pharmacol. 462, 1-8.]); Abonia et al. (2004[Abonia, R., Insuasty, B., Quiroga, J., Nogueras, M. & Meier, H. (2004). Mini-Rev. Org. Chem. 1, 387-402.]). For details of the synthesis, see: Brandes & Roth (1967[Brandes, R. & Roth, H. (1967). Arch. Pharm. 300, 1005-1007.]); Vogel et al. (1978[Vogel, A. I., Tatchell, A. R., Furnis, B. S., Hannaford, A. J. & Smith, P. G. W. (1978). Textbook of Practical Organic Chemistry including Qualitative Organic Analysis, 4th ed., p. 773. New York: Longman Group Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15BrNO+·Cl

  • Mr = 292.60

  • Monoclinic, P 21 /c

  • a = 10.5050 (8) Å

  • b = 12.5694 (5) Å

  • c = 10.6483 (5) Å

  • β = 115.594 (2)°

  • V = 1268.06 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.16 mm−1

  • T = 295 K

  • 0.44 × 0.26 × 0.26 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.61, Tmax = 1.00

  • 2564 measured reflections

  • 2564 independent reflections

  • 2258 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.12

  • 2564 reflections

  • 146 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯Cl1 1.00 1.99 2.983 (2) 171

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The classical method for the synthesis of 3-(N,N-dialkylamino)propiophenone salts is the well known Mannich reaction between an alkyl aryl ketone, dialkylamine hydrochloride and polyformaldehyde in refluxing ethanol (Vogel et al., 1978). In this approach, the N,N-dialkylmethyleneammonium chloride (H2C=NR2Cl) is formed in situ, which suffers a Michael type addition from the methylene active ketone to render the expected Mannich adduct (Brandes et al., 1967).

The 3-(N,N-dialkylamino)propiophenone salts are visualized as synthetic equivalents of the less stable and more reactive α,β-unsaturated aryl vinyl ketones. For instance, they can react with nucleophiles like amines through a Michael type addition which could lead to the formation of β-aminoalcohols as is our purpose with compound (I).

In the crystal the title compound adopts an essentially planar structure with a dihedral angle of 5.0 (2)° between the almost planar aminopropane-1-one group (maximal deviation from least square plane 0.038Å at C9) and the phenyl ring. The protonated N10 atom forms a hydrogen bond to Cl1 (N10—H10···Cl1 1.99 Å).

Related literature top

For (N,N-dialkylamino)propiophenones, see: Alper et al. (2002); Pupo et al. (2003); Abonia et al. (2004). For details of the synthesis, see: Brandes & Roth (1967); Vogel et al. (1978).

Experimental top

A mixture of dimethylamine hydrochloride (2.0 g, 25 mmol), polyformaldehyde (0.754 g, 25 mmol), p-bromoacetophenone (3.66 g, 9.2 mmol), 95% ethanol (4 mL) and conc HCl (0.02 mL) was heated at reflux in an oil bath during 3 h (Vogel et al. (1978)). After complete disappearance of the starting acetophenone, as monitored by thin-layer chromatography, the hot mixture was filtered; acetone (15 mL) was added to the filtrate and cooled into the freezer overnight. The resulting solid was filtered, washed with acetone (2 x 5 mL) and dried at ambient temperature affording the title compound (I), as white solid [yield 94%, m.p. 495 K].

Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation at ambient temperature and in air, from a 1:1 ethanol:acetone solution.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
3-(4-Bromophenyl)-N,N-dimethyl-3-oxopropan-1-aminium chloride top
Crystal data top
C11H15BrNO+·ClF(000) = 592
Mr = 292.60Dx = 1.533 Mg m3
Monoclinic, P21/cMelting point: 495 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 10.5050 (8) ÅCell parameters from 25 reflections
b = 12.5694 (5) Åθ = 64–74°
c = 10.6483 (5) ŵ = 6.16 mm1
β = 115.594 (2)°T = 295 K
V = 1268.06 (12) Å3Block, brown
Z = 40.44 × 0.26 × 0.26 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2258 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.000
Graphite monochromatorθmax = 73.8°, θmin = 4.7°
θ/2ω scansh = 1113
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 150
Tmin = 0.61, Tmax = 1.00l = 130
2564 measured reflections3 standard reflections every 60 min
2564 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Only H-atom displacement parameters refined
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.3958P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2564 reflectionsΔρmax = 0.72 e Å3
146 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (5)
Crystal data top
C11H15BrNO+·ClV = 1268.06 (12) Å3
Mr = 292.60Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.5050 (8) ŵ = 6.16 mm1
b = 12.5694 (5) ÅT = 295 K
c = 10.6483 (5) Å0.44 × 0.26 × 0.26 mm
β = 115.594 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2258 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
Rint = 0.000
Tmin = 0.61, Tmax = 1.003 standard reflections every 60 min
2564 measured reflections intensity decay: 5%
2564 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123Only H-atom displacement parameters refined
S = 1.12Δρmax = 0.72 e Å3
2564 reflectionsΔρmin = 0.65 e Å3
146 parameters
Special details top

Experimental. IR (KBr disk): 3080, 3024, 2954, 2912, 2628, 2543 (br), 2503, 2440 (br), 1684 (C=O), 1580, 1473, 1391, 1329, 1216, 1065, 1002, 963, 787 cm-1. 1H-NMR (DMSO-d6): 2.79 (s, 6H), 3.39 (t, J = 7.5 Hz, 2H), 3.64 (t, J = 7.2 Hz,2H), 7.78 ("d", J =8.4 Hz, 2H), 7.95 ("d", J = 8.4 Hz, 2H), 10.93 (bs, 1H, NH) p.p.m.; 13C-NMR (DMSO-d6): 33.2, 42.1, 51.5, 127.8, 130.0, 131.9, 134.9, 196.0 (C=O) p.p.m..

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.31084 (4)0.13998 (3)0.50877 (3)0.04655 (18)
Cl10.89690 (9)0.34411 (6)1.32816 (9)0.0430 (2)
O10.7418 (3)0.0972 (2)1.2059 (2)0.0539 (6)
C10.4405 (3)0.1090 (2)0.6944 (3)0.0374 (6)
C20.5264 (3)0.0213 (3)0.7200 (3)0.0436 (7)
H20.52000.02210.64670.058 (11)*
C30.6223 (3)0.0025 (3)0.8549 (3)0.0411 (7)
H30.67940.06230.87220.040 (9)*
C40.6335 (3)0.0629 (2)0.9646 (3)0.0335 (6)
C50.5434 (4)0.1497 (2)0.9364 (4)0.0419 (7)
H50.54780.19221.00970.060 (11)*
C60.4478 (4)0.1745 (3)0.8029 (3)0.0430 (7)
H60.38930.23360.78540.054 (11)*
C70.7377 (3)0.0416 (2)1.1111 (3)0.0362 (6)
C80.8395 (3)0.0495 (2)1.1373 (3)0.0369 (6)
H8A0.78740.11601.11250.058 (8)*
H8B0.88850.04141.07880.058 (8)*
C90.9456 (3)0.0535 (2)1.2878 (3)0.0360 (6)
H9A0.99860.01261.31130.046 (7)*
H9B0.89570.05901.34590.046 (7)*
N101.0466 (3)0.14452 (17)1.3199 (3)0.0358 (6)
H100.99590.21361.31230.053 (11)*
C111.1447 (5)0.1452 (3)1.4695 (4)0.0578 (11)
H11A1.20840.20421.48890.082 (10)*
H11B1.09190.15181.52360.082 (10)*
H11C1.19740.08001.49320.082 (10)*
C121.1245 (4)0.1462 (3)1.2322 (4)0.0526 (9)
H12A1.05850.14621.13570.101 (11)*
H12B1.18170.20921.25240.101 (11)*
H12C1.18380.08451.25180.101 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0519 (3)0.0423 (2)0.0400 (2)0.00146 (13)0.01472 (18)0.00820 (13)
Cl10.0541 (5)0.0294 (4)0.0461 (4)0.0091 (3)0.0223 (4)0.0025 (3)
O10.0644 (15)0.0500 (14)0.0408 (12)0.0130 (12)0.0166 (12)0.0113 (11)
C10.0398 (15)0.0351 (15)0.0376 (15)0.0020 (12)0.0170 (13)0.0041 (12)
C20.0492 (18)0.0441 (18)0.0381 (15)0.0058 (14)0.0193 (14)0.0037 (13)
C30.0436 (16)0.0380 (16)0.0418 (16)0.0102 (13)0.0187 (14)0.0025 (13)
C40.0364 (14)0.0294 (14)0.0363 (14)0.0003 (11)0.0170 (12)0.0011 (11)
C50.0505 (18)0.0309 (16)0.0444 (18)0.0058 (12)0.0206 (15)0.0055 (12)
C60.0519 (19)0.0291 (15)0.0471 (18)0.0082 (13)0.0206 (15)0.0004 (13)
C70.0401 (15)0.0284 (13)0.0406 (15)0.0010 (11)0.0181 (13)0.0009 (12)
C80.0418 (15)0.0318 (15)0.0347 (14)0.0019 (12)0.0142 (12)0.0018 (11)
C90.0467 (16)0.0270 (14)0.0339 (14)0.0007 (12)0.0170 (13)0.0003 (11)
N100.0458 (14)0.0228 (11)0.0342 (13)0.0019 (9)0.0130 (11)0.0029 (9)
C110.070 (2)0.0371 (19)0.0411 (19)0.0028 (16)0.0002 (18)0.0031 (14)
C120.057 (2)0.044 (2)0.063 (2)0.0121 (15)0.0319 (19)0.0101 (16)
Geometric parameters (Å, º) top
Br1—C11.894 (3)C2—H20.9300
O1—C71.213 (4)C3—H30.9300
C1—C21.375 (4)C5—H50.9300
C1—C61.394 (4)C6—H60.9300
C2—C31.385 (4)C8—H8A0.9700
C3—C41.391 (4)C8—H8B0.9700
C4—C51.390 (4)C9—H9A0.9700
C4—C71.493 (4)C9—H9B0.9700
C5—C61.376 (5)C11—H11A0.9600
C7—C81.509 (4)C11—H11B0.9600
C8—C91.507 (4)C11—H11C0.9600
C9—N101.496 (4)C12—H12A0.9600
N10—C111.477 (4)C12—H12B0.9600
N10—C121.484 (5)C12—H12C0.9600
N10—H101.0000
C2—C1—C6120.9 (3)C1—C6—H6121.00
C2—C1—Br1119.1 (2)C5—C6—H6121.00
C6—C1—Br1120.0 (2)C7—C8—H8A109.00
C1—C2—C3120.0 (3)C7—C8—H8B109.00
C2—C3—C4120.2 (3)C9—C8—H8A109.00
C5—C4—C3118.7 (3)C9—C8—H8B109.00
C5—C4—C7119.3 (3)H8A—C8—H8B108.00
C3—C4—C7122.0 (3)N10—C9—H9A109.00
C6—C5—C4121.7 (3)N10—C9—H9B109.00
C5—C6—C1118.5 (3)C8—C9—H9A109.00
O1—C7—C4120.9 (3)C8—C9—H9B109.00
O1—C7—C8121.1 (3)H9A—C9—H9B108.00
C4—C7—C8118.0 (2)N10—C11—H11A109.00
C9—C8—C7111.2 (2)N10—C11—H11B109.00
N10—C9—C8113.2 (2)N10—C11—H11C109.00
C11—N10—C12111.2 (3)H11A—C11—H11B109.00
C11—N10—C9110.2 (2)H11A—C11—H11C110.00
C12—N10—C9113.4 (2)H11B—C11—H11C109.00
C1—C2—H2120.00N10—C12—H12A110.00
C3—C2—H2120.00N10—C12—H12B109.00
C2—C3—H3120.00N10—C12—H12C110.00
C4—C3—H3120.00H12A—C12—H12B109.00
C4—C5—H5119.00H12A—C12—H12C109.00
C6—C5—H5119.00H12B—C12—H12C109.00
C6—C1—C2—C30.5 (5)C5—C4—C7—O12.1 (5)
Br1—C1—C2—C3179.7 (3)C3—C4—C7—O1177.0 (3)
C1—C2—C3—C40.8 (5)C5—C4—C7—C8176.6 (3)
C2—C3—C4—C52.3 (5)C3—C4—C7—C84.2 (4)
C2—C3—C4—C7178.6 (3)O1—C7—C8—C94.1 (4)
C3—C4—C5—C62.5 (5)C4—C7—C8—C9174.6 (2)
C7—C4—C5—C6178.4 (3)C7—C8—C9—N10178.4 (2)
C4—C5—C6—C11.2 (5)C8—C9—N10—C11178.4 (3)
C2—C1—C6—C50.3 (5)C8—C9—N10—C1256.2 (4)
Br1—C1—C6—C5179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···Cl11.001.992.983 (2)171

Experimental details

Crystal data
Chemical formulaC11H15BrNO+·Cl
Mr292.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.5050 (8), 12.5694 (5), 10.6483 (5)
β (°) 115.594 (2)
V3)1268.06 (12)
Z4
Radiation typeCu Kα
µ (mm1)6.16
Crystal size (mm)0.44 × 0.26 × 0.26
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.61, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
2564, 2564, 2258
Rint0.000
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.12
No. of reflections2564
No. of parameters146
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.72, 0.65

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···Cl11.001.992.983 (2)171
 

Acknowledgements

Financial support from COLCIENCIAS and the Universidad del Valle is gratefully acknowledged.

References

First citationAbonia, R., Insuasty, B., Quiroga, J., Nogueras, M. & Meier, H. (2004). Mini-Rev. Org. Chem. 1, 387–402.  Web of Science CrossRef CAS Google Scholar
First citationAlper, K., Barry, J. & Balabanov, A. (2002). Epilepsy Behav. 3, 13–18.  CrossRef PubMed Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandes, R. & Roth, H. (1967). Arch. Pharm. 300, 1005–1007.  CAS Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationPupo, A., Uberti, M. & Minneman, K. (2003). Eur. J. Pharmacol. 462, 1–8.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogel, A. I., Tatchell, A. R., Furnis, B. S., Hannaford, A. J. & Smith, P. G. W. (1978). Textbook of Practical Organic Chemistry including Qualitative Organic Analysis, 4th ed., p. 773. New York: Longman Group Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds