metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(tri­aqua­cadmium)-μ-5-hy­dr­oxy­isophthalato-κ3O1,O1′:O3]

aCollege of Mechanical & Material Engineering, ChinaThree Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: junzhao08@126.com

(Received 10 October 2011; accepted 13 October 2011; online 22 October 2011)

The title compound, [Cd(C8H4O5)(H2O)3]n, a one-dimensional chain complex of 5-hy­droxy­isophthalate with CdII, was prepared by a hydro­thermal reaction. The CdII ion is coordinated by three water O atoms and three carboxyl­ate O atoms of two different 5-hy­droxy­isophthalate ligands, which act as bidentate and monodentate ligands. The crystal structure is stabilized by O—H⋯O hydrogen bonds.

Related literature

For applications of coordination polymers in functional materials, see: Inoue et al. (2001[Inoue, K., Imai, H., Ghalsasi, P. S., Kikuchi, K., Ohba, M., Okawa, H. & Yakhmi, J. V. (2001). Angew. Chem. Int. Ed. 40, 4242-4245.]). For coordination polymers including benzene­dicarboxyl­ates and their derivatives, see: Xiao et al. (2004[Xiao, H.-P., Shi, Q. & Ye, M.-D. (2004). Acta Cryst. E60, m1498-m1500.]); Plater et al. (2001[Plater, M., Foreman, M., Howie, R., Skakle, J., McWilliam, S. & Coronado, E. (2001). Polyhedron, 18, 2293-2303.]); Zhao et al. (2011[Zhao, J., Li, D. S., Hu, Z. Z., Dong, W. W., Zou, K. & Lu, J. K. (2011). Inorg. Chem. Commun. 14, 771-774.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O5)(H2O)3]

  • Mr = 346.56

  • Orthorhombic, P b c a

  • a = 8.027 (3) Å

  • b = 13.582 (5) Å

  • c = 19.591 (7) Å

  • V = 2135.7 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.647, Tmax = 0.702

  • 17155 measured reflections

  • 1874 independent reflections

  • 1781 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 1.00

  • 1874 reflections

  • 176 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2i 0.86 (1) 1.79 (1) 2.645 (2) 178 (3)
O8—H8A⋯O1ii 0.86 (1) 1.89 (2) 2.719 (3) 161 (3)
O7—H7B⋯O3iii 0.86 (1) 1.98 (2) 2.790 (3) 156 (3)
O6—H6A⋯O5ii 0.86 (1) 1.89 (1) 2.748 (3) 178 (3)
O7—H7A⋯O8iv 0.86 (1) 2.18 (2) 2.947 (3) 149 (3)
O8—H8B⋯O4v 0.86 (1) 2.08 (2) 2.869 (3) 154 (3)
O6—H6B⋯O3vi 0.86 (1) 1.94 (1) 2.781 (3) 168 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and construction of coordination polymers has attracted much attention owing to their intriguing topologies and potential applications as functional materials (Inoue et al., 2001). Benzenedicarboxylates and their derivatives have been extensively employed to link metal ions in the synthesis of one-, two- or three-dimensional structures. They often act as bridging or chelating ligands (Xiao et al., 2004; Plater et al., 2001). In continuation of our study of the chemistry of benzenedicarboxylate ligands (Zhao et al., 2011), we present here the title compound, in which the 5- hydroxyisophthalate dianion functions as a bridge between adjacent CdII centers. In the title compound, [Cd(C8H4O5)(H2O)3]n, CdII ion is hexacoordinated in a distorted octahedral geometry by three O atoms from two organic ligands and three water molecules (Fig. 1). Each ligand bridges two CdII ions, that results in formation of polymeric zigzag chains extended along the direction [001] (Fig. 2). The crystal packing is stabilized by extensive O–H···O hydrogen bonds (Table 1).

Related literature top

For applications of coordination polymers in functional materials, see: Inoue et al. (2001). For coordination polymers including benzenedicarboxylates and their derivatives, see: Xiao et al. (2004); Plater et al. (2001); Zhao et al. (2011).

Experimental top

A mixture of 5-hydroxyisophthalic acid (0.0182 g, 0.1 mmol), Cd(CH3COO)2.2H2O (0.0266 g, 0.1 mmol), water (8 mL) was stired vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 413 K for 3days, and then cooled to room temperature at 5 K h-1 to obtain colorless prism crystals suitable for X-ray analysis.

Refinement top

All H-atoms bonded to C were positioned geometrically and refined using a riding model with C–H = 0.93 Å, Uiso(H) = 1.2 Ueq(C) for aromatic hydrogen atoms. The H-atoms bonded to O were located in a difference Fourier map and their coordinates were refined. The O-H distance was restrained to with O–H = 0.86 (1)Å and the H···H distances in the water molecules to 1.39 (1)Å. Uiso(H) was set to 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP representation of the structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: A: -x + 1/2,-y + 1,z - 1/2].
[Figure 2] Fig. 2. A portion of polymeric zigzag chain in the title compound. H atoms are omitted for clarity.
catena-Poly[(triaquacadmium)-µ-5-hydroxyisophthalato- κ3O1,O1':O3] top
Crystal data top
[Cd(C8H4O5)(H2O)3]4
Mr = 346.56Dx = 2.156 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5687 reflections
a = 8.027 (3) Åθ = 3.1–25.0°
b = 13.582 (5) ŵ = 2.08 mm1
c = 19.591 (7) ÅT = 296 K
V = 2135.7 (14) Å3Prism, colourless
Z = 80.23 × 0.20 × 0.18 mm
F(000) = 1360
Data collection top
Bruker SMART CCD
diffractometer
1874 independent reflections
Radiation source: fine-focus sealed tube1781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
phi and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.647, Tmax = 0.702k = 1616
17155 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.030P)2 + 2.147P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
1874 reflectionsΔρmax = 0.64 e Å3
176 parametersΔρmin = 0.48 e Å3
10 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (2)
Crystal data top
[Cd(C8H4O5)(H2O)3]V = 2135.7 (14) Å3
Mr = 346.56Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.027 (3) ŵ = 2.08 mm1
b = 13.582 (5) ÅT = 296 K
c = 19.591 (7) Å0.23 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1874 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1781 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.702Rint = 0.074
17155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02310 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.64 e Å3
1874 reflectionsΔρmin = 0.48 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.24003 (2)0.627985 (11)0.051993 (8)0.02196 (12)
O10.2744 (2)0.47757 (12)0.10249 (8)0.0306 (4)
O20.3061 (2)0.60170 (12)0.17270 (8)0.0291 (4)
O30.2644 (2)0.48696 (15)0.42628 (10)0.0439 (5)
O40.3590 (3)0.33884 (15)0.44912 (8)0.0398 (5)
O50.5561 (2)0.19980 (12)0.22523 (8)0.0363 (4)
H5A0.601 (4)0.169 (2)0.2588 (11)0.054*
O60.0295 (2)0.64996 (15)0.08972 (9)0.0364 (4)
H6A0.039 (4)0.664 (2)0.1324 (6)0.055*
H6B0.100 (3)0.6046 (18)0.0802 (14)0.055*
O70.5220 (3)0.62281 (14)0.03440 (14)0.0509 (6)
H7B0.579 (4)0.5698 (14)0.0398 (18)0.076*
H7A0.587 (3)0.6668 (17)0.0178 (18)0.076*
O80.2910 (3)0.79576 (13)0.05101 (9)0.0365 (4)
H8A0.257 (3)0.8459 (18)0.0741 (17)0.055*
H8B0.3899 (19)0.808 (2)0.0371 (15)0.055*
C10.3094 (3)0.51031 (15)0.16111 (10)0.0222 (5)
C20.3560 (3)0.43938 (15)0.21601 (11)0.0212 (4)
C30.3239 (3)0.45950 (16)0.28430 (11)0.0229 (5)
H30.27520.51890.29700.027*
C40.3659 (3)0.38923 (15)0.33382 (11)0.0222 (5)
C50.4416 (3)0.30120 (16)0.31452 (11)0.0250 (5)
H50.46760.25410.34730.030*
C60.4780 (3)0.28385 (17)0.24653 (11)0.0243 (5)
C70.4336 (3)0.35181 (17)0.19718 (11)0.0235 (5)
H70.45550.33900.15140.028*
C80.3255 (3)0.40683 (18)0.40740 (11)0.0259 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02666 (16)0.02087 (17)0.01835 (16)0.00125 (6)0.00444 (6)0.00390 (5)
O10.0507 (10)0.0204 (8)0.0207 (8)0.0003 (7)0.0092 (7)0.0013 (6)
O20.0432 (10)0.0181 (7)0.0261 (8)0.0005 (8)0.0100 (8)0.0009 (7)
O30.0584 (13)0.0363 (11)0.0370 (10)0.0048 (9)0.0181 (9)0.0067 (9)
O40.0525 (12)0.0485 (11)0.0185 (8)0.0138 (10)0.0072 (7)0.0065 (7)
O50.0566 (12)0.0295 (9)0.0228 (8)0.0199 (8)0.0079 (8)0.0036 (7)
O60.0338 (10)0.0444 (10)0.0309 (9)0.0040 (8)0.0052 (8)0.0034 (8)
O70.0292 (11)0.0421 (13)0.0815 (16)0.0072 (8)0.0138 (11)0.0168 (10)
O80.0405 (10)0.0221 (9)0.0469 (11)0.0029 (8)0.0122 (8)0.0071 (7)
C10.0245 (11)0.0203 (11)0.0218 (11)0.0009 (9)0.0020 (9)0.0010 (8)
C20.0227 (11)0.0202 (10)0.0207 (10)0.0024 (9)0.0023 (8)0.0018 (8)
C30.0255 (11)0.0201 (11)0.0229 (10)0.0004 (9)0.0002 (9)0.0003 (8)
C40.0239 (11)0.0243 (11)0.0184 (11)0.0032 (9)0.0007 (9)0.0013 (8)
C50.0309 (12)0.0229 (11)0.0212 (11)0.0012 (9)0.0038 (9)0.0047 (9)
C60.0284 (11)0.0204 (11)0.0241 (11)0.0035 (9)0.0038 (9)0.0007 (8)
C70.0291 (12)0.0250 (10)0.0164 (10)0.0013 (10)0.0012 (9)0.0004 (8)
C80.0235 (11)0.0336 (12)0.0207 (11)0.0043 (10)0.0026 (9)0.0006 (10)
Geometric parameters (Å, º) top
Cd1—O4i2.2129 (17)O7—H7B0.860 (10)
Cd1—O12.2865 (17)O7—H7A0.856 (10)
Cd1—O72.290 (2)O8—H8A0.862 (10)
Cd1—O62.306 (2)O8—H8B0.857 (10)
Cd1—O82.315 (2)C1—C21.492 (3)
Cd1—O22.4496 (18)C2—C31.389 (3)
Cd1—C12.726 (2)C2—C71.392 (3)
O1—C11.263 (3)C3—C41.402 (3)
O2—C11.262 (3)C3—H30.9300
O3—C81.250 (3)C4—C51.394 (3)
O4—C81.262 (3)C4—C81.497 (3)
O4—Cd1ii2.2129 (17)C5—C61.384 (3)
O5—C61.368 (3)C5—H50.9300
O5—H5A0.857 (10)C6—C71.383 (3)
O6—H6A0.861 (10)C7—H70.9300
O6—H6B0.855 (10)
O4i—Cd1—O1128.26 (7)Cd1—O8—H8A136 (2)
O4i—Cd1—O7102.96 (9)Cd1—O8—H8B111.2 (19)
O1—Cd1—O785.33 (7)H8A—O8—H8B107.6 (15)
O4i—Cd1—O685.89 (7)O2—C1—O1120.34 (19)
O1—Cd1—O695.16 (7)O2—C1—C2120.71 (19)
O7—Cd1—O6168.36 (8)O1—C1—C2118.95 (19)
O4i—Cd1—O881.69 (7)O2—C1—Cd163.92 (11)
O1—Cd1—O8149.51 (7)O1—C1—Cd156.50 (11)
O7—Cd1—O881.63 (7)C2—C1—Cd1174.35 (15)
O6—Cd1—O892.35 (7)C3—C2—C7120.40 (19)
O4i—Cd1—O2170.62 (7)C3—C2—C1121.38 (19)
O1—Cd1—O254.97 (5)C7—C2—C1118.22 (19)
O7—Cd1—O285.81 (8)C2—C3—C4119.2 (2)
O6—Cd1—O284.98 (7)C2—C3—H3120.4
O8—Cd1—O296.50 (6)C4—C3—H3120.4
O4i—Cd1—C1155.06 (7)C5—C4—C3120.1 (2)
O1—Cd1—C127.43 (6)C5—C4—C8119.52 (19)
O7—Cd1—C184.16 (8)C3—C4—C8120.4 (2)
O6—Cd1—C190.92 (7)C6—C5—C4119.95 (19)
O8—Cd1—C1123.19 (7)C6—C5—H5120.0
O2—Cd1—C127.56 (6)C4—C5—H5120.0
C1—O1—Cd196.07 (13)O5—C6—C7117.51 (19)
C1—O2—Cd188.52 (12)O5—C6—C5122.17 (19)
C8—O4—Cd1ii111.35 (15)C7—C6—C5120.3 (2)
C6—O5—H5A111 (2)C6—C7—C2120.01 (19)
Cd1—O6—H6A115 (2)C6—C7—H7120.0
Cd1—O6—H6B117 (2)C2—C7—H7120.0
H6A—O6—H6B108.3 (16)O3—C8—O4122.0 (2)
Cd1—O7—H7B122 (2)O3—C8—C4120.6 (2)
Cd1—O7—H7A130 (2)O4—C8—C4117.4 (2)
H7B—O7—H7A107.9 (16)
O4i—Cd1—O1—C1170.85 (13)O6—Cd1—C1—C2136.9 (16)
O7—Cd1—O1—C186.31 (15)O8—Cd1—C1—C2129.7 (16)
O6—Cd1—O1—C182.01 (14)O2—Cd1—C1—C2145.8 (17)
O8—Cd1—O1—C121.6 (2)O2—C1—C2—C329.9 (3)
O2—Cd1—O1—C11.84 (13)O1—C1—C2—C3150.7 (2)
O4i—Cd1—O2—C1115.2 (4)Cd1—C1—C2—C3173.9 (15)
O1—Cd1—O2—C11.83 (13)O2—C1—C2—C7150.0 (2)
O7—Cd1—O2—C185.41 (14)O1—C1—C2—C729.5 (3)
O6—Cd1—O2—C1101.73 (14)Cd1—C1—C2—C75.9 (17)
O8—Cd1—O2—C1166.47 (14)C7—C2—C3—C42.0 (3)
Cd1—O2—C1—O13.1 (2)C1—C2—C3—C4178.2 (2)
Cd1—O2—C1—C2176.31 (19)C2—C3—C4—C51.2 (3)
Cd1—O1—C1—O23.4 (2)C2—C3—C4—C8177.1 (2)
Cd1—O1—C1—C2176.08 (17)C3—C4—C5—C61.1 (3)
O4i—Cd1—C1—O2159.52 (16)C8—C4—C5—C6179.4 (2)
O1—Cd1—C1—O2176.8 (2)C4—C5—C6—O5178.2 (2)
O7—Cd1—C1—O292.13 (15)C4—C5—C6—C72.6 (3)
O6—Cd1—C1—O277.29 (14)O5—C6—C7—C2179.0 (2)
O8—Cd1—C1—O216.12 (17)C5—C6—C7—C21.8 (3)
O4i—Cd1—C1—O117.2 (2)C3—C2—C7—C60.5 (3)
O7—Cd1—C1—O191.12 (15)C1—C2—C7—C6179.6 (2)
O6—Cd1—C1—O199.46 (14)Cd1ii—O4—C8—O39.0 (3)
O8—Cd1—C1—O1167.13 (13)Cd1ii—O4—C8—C4172.58 (16)
O2—Cd1—C1—O1176.8 (2)C5—C4—C8—O3176.8 (2)
O4i—Cd1—C1—C254.7 (16)C3—C4—C8—O34.9 (3)
O1—Cd1—C1—C237.4 (15)C5—C4—C8—O41.6 (3)
O7—Cd1—C1—C253.7 (16)C3—C4—C8—O4176.7 (2)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2iii0.86 (1)1.79 (1)2.645 (2)178 (3)
O8—H8A···O1iv0.86 (1)1.89 (2)2.719 (3)161 (3)
O7—H7B···O3v0.86 (1)1.98 (2)2.790 (3)156 (3)
O6—H6A···O5iv0.86 (1)1.89 (1)2.748 (3)178 (3)
O7—H7A···O8vi0.86 (1)2.18 (2)2.947 (3)149 (3)
O8—H8B···O4vii0.86 (1)2.08 (2)2.869 (3)154 (3)
O6—H6B···O3viii0.86 (1)1.94 (1)2.781 (3)168 (3)
Symmetry codes: (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y, z+1/2; (vi) x+1/2, y+3/2, z; (vii) x+1, y+1/2, z+1/2; (viii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O5)(H2O)3]
Mr346.56
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.027 (3), 13.582 (5), 19.591 (7)
V3)2135.7 (14)
Z8
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.647, 0.702
No. of measured, independent and
observed [I > 2σ(I)] reflections
17155, 1874, 1781
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 1.00
No. of reflections1874
No. of parameters176
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.48

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.857 (10)1.789 (11)2.645 (2)178 (3)
O8—H8A···O1ii0.862 (10)1.890 (16)2.719 (3)161 (3)
O7—H7B···O3iii0.860 (10)1.980 (18)2.790 (3)156 (3)
O6—H6A···O5ii0.861 (10)1.888 (10)2.748 (3)178 (3)
O7—H7A···O8iv0.856 (10)2.18 (2)2.947 (3)149 (3)
O8—H8B···O4v0.857 (10)2.075 (17)2.869 (3)154 (3)
O6—H6B···O3vi0.855 (10)1.939 (12)2.781 (3)168 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+3/2, z; (v) x+1, y+1/2, z+1/2; (vi) x1/2, y, z+1/2.
 

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationInoue, K., Imai, H., Ghalsasi, P. S., Kikuchi, K., Ohba, M., Okawa, H. & Yakhmi, J. V. (2001). Angew. Chem. Int. Ed. 40, 4242–4245.  Web of Science CrossRef CAS Google Scholar
First citationPlater, M., Foreman, M., Howie, R., Skakle, J., McWilliam, S. & Coronado, E. (2001). Polyhedron, 18, 2293–2303.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H.-P., Shi, Q. & Ye, M.-D. (2004). Acta Cryst. E60, m1498–m1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J., Li, D. S., Hu, Z. Z., Dong, W. W., Zou, K. & Lu, J. K. (2011). Inorg. Chem. Commun. 14, 771–774.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds