organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Meth­­oxy-4-methyl-9,10-anthra­quinone

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 October 2011; accepted 11 October 2011; online 22 October 2011)

The non-H atoms of the title compound, C16H12O3, lie approximately in a common plane (r.m.s. deviation = 0.032 Å). The methyl C atom is forced away from the carbonyl O atom which can be seen by the widened Cfused ring–Cbenzene–Cmeth­yl angle of 125.8 (2)°.

Related literature

For the synthesis, see: Bentley et al. (1907[Bentley, W. H., Gardner, H. D. & Weizmann, C. (1907). J. Chem. Soc. Trans. 91, 1626-1640.]); Fischer & Ziegler (1913[Fischer, O. & Ziegler, H. (1913). J. Prakt. Chem. 86, 289-297.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O3

  • Mr = 252.26

  • Monoclinic, P 21

  • a = 8.8808 (4) Å

  • b = 4.8940 (2) Å

  • c = 13.7792 (5) Å

  • β = 96.136 (4)°

  • V = 595.45 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.797, Tmax = 0.984

  • 2343 measured reflections

  • 1367 independent reflections

  • 1317 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.108

  • S = 1.16

  • 1367 reflections

  • 173 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1-Methoxy-4-methyl-9,10-anthraquinone was reported more than a century ago (Bentley et al., 1907; Fischer & Ziegler, 1913). We have used a modification of the synthesis to prepare 1-hydroxy-4-methyl-9,10-anthraquinone, which was then methylated to yield the title compound (Scheme). The non-hydrogen atoms of 1-methyl-4-methoxy-9,10-anthraquinone lie on a plane (r.m.s. deviation 0.032Å). The methyl C atom is forced away from the by the carbonyl O atom that is four bonds removed (Cfused ring–Cbenzene–Cmethyl 125.8 (2) °].

Its isolation from plants has not been reported yet.

Related literature top

For the synthesis, see: Bentley et al. (1907); Fischer & Ziegler (1913).

Experimental top

Phthalic anhydride (1.00 g, 0.67 mmol) and p-cresol (1.63 g, 1.50 mmol) were heated in a mixture of aluminium chloride (45 g) and sodium chloride (9 g) heated to 423–443 K for an hour. The reaction mixture turned deep red. Water (500 ml) containing concentrated hydrochloric acid (15 ml) was added. The product was collected and washed with saturated sodium bicarbonate, and was next purified by medium-pressure liquid chromatography (hexane: ethyl acetate) to give 1-hydroxy-4-methyl-9,10-anthroquinone (60% yield).

In the subsequent methylation reaction, 1-hydroxy-4-methyl-9,10-anthraquinone (1 mmol) and methyl iodide (1.5 mmol) along with potassium carbonate (1 mmol) were heated in acetone (30 ml) for 24 h. The solvent was removed and the product dissolved in dichloromethane. The solution was extraced with water. The organic layer was purified by medium-pressure liquid chromatography (hexane: ethyl acetate) to give the pure title compound (80% yield). Crystals were obtained by using methanol as solvent for recrystallization. The formulation was established by proton and carbon-13 NMR spectroscopy.

Refinement top

H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

As the Friedel pair coverage was only 37%, 412 Friedel pairs were merged.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C16H12O3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
1-Methoxy-4-methyl-9,10-anthraquinone top
Crystal data top
C16H12O3F(000) = 264
Mr = 252.26Dx = 1.407 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 1483 reflections
a = 8.8808 (4) Åθ = 3.2–76.1°
b = 4.8940 (2) ŵ = 0.79 mm1
c = 13.7792 (5) ÅT = 100 K
β = 96.136 (4)°Plate, orange
V = 595.45 (4) Å30.30 × 0.10 × 0.02 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1367 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1317 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.014
Detector resolution: 10.4041 pixels mm-1θmax = 76.3°, θmin = 3.2°
ω scansh = 711
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 56
Tmin = 0.797, Tmax = 0.984l = 1717
2343 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.0361P]
where P = (Fo2 + 2Fc2)/3
1367 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C16H12O3V = 595.45 (4) Å3
Mr = 252.26Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.8808 (4) ŵ = 0.79 mm1
b = 4.8940 (2) ÅT = 100 K
c = 13.7792 (5) Å0.30 × 0.10 × 0.02 mm
β = 96.136 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1367 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1317 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.984Rint = 0.014
2343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 1.16Δρmax = 0.19 e Å3
1367 reflectionsΔρmin = 0.18 e Å3
173 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55994 (14)0.5010 (4)0.81572 (9)0.0371 (4)
O20.66956 (14)0.8795 (3)0.93147 (9)0.0317 (3)
O31.07132 (15)0.4573 (4)0.64116 (10)0.0390 (4)
C10.67730 (18)0.5016 (4)0.77647 (11)0.0248 (4)
C20.69140 (19)0.3128 (4)0.69352 (11)0.0240 (4)
C30.5701 (2)0.1401 (5)0.66264 (12)0.0291 (4)
H30.48020.14550.69430.035*
C40.5813 (2)0.0384 (5)0.58604 (13)0.0323 (4)
H40.49920.15680.56550.039*
C50.7123 (2)0.0457 (5)0.53870 (13)0.0324 (4)
H50.71850.16660.48530.039*
C60.8330 (2)0.1223 (5)0.56916 (11)0.0300 (4)
H60.92260.11600.53720.036*
C70.82303 (19)0.3018 (4)0.64715 (11)0.0247 (4)
C80.95447 (19)0.4775 (4)0.68049 (12)0.0264 (4)
C90.94200 (19)0.6767 (4)0.76192 (11)0.0235 (4)
C101.06468 (19)0.8520 (4)0.79051 (12)0.0285 (4)
C111.0481 (2)1.0335 (4)0.86625 (13)0.0304 (4)
H111.12951.15350.88650.037*
C120.9187 (2)1.0470 (4)0.91328 (13)0.0280 (4)
H120.91241.17550.96430.034*
C130.79734 (18)0.8729 (4)0.88619 (11)0.0250 (4)
C140.80695 (18)0.6854 (4)0.80882 (11)0.0233 (4)
C151.2125 (2)0.8622 (6)0.74564 (15)0.0400 (5)
H15A1.19270.90880.67630.060*
H15B1.26220.68330.75240.060*
H15C1.27861.00100.77910.060*
C160.6594 (2)1.0809 (5)1.00589 (13)0.0334 (4)
H16A0.56231.06181.03300.050*
H16B0.66631.26370.97770.050*
H16C0.74251.05491.05780.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0319 (6)0.0462 (9)0.0358 (7)0.0103 (7)0.0162 (5)0.0114 (7)
O20.0325 (6)0.0349 (8)0.0297 (6)0.0025 (6)0.0130 (5)0.0066 (6)
O30.0362 (7)0.0443 (9)0.0403 (7)0.0043 (7)0.0218 (6)0.0053 (7)
C10.0282 (7)0.0262 (9)0.0213 (7)0.0011 (8)0.0086 (6)0.0027 (8)
C20.0290 (8)0.0234 (9)0.0198 (7)0.0005 (8)0.0039 (6)0.0035 (7)
C30.0328 (8)0.0297 (10)0.0249 (7)0.0020 (9)0.0040 (6)0.0031 (8)
C40.0390 (9)0.0294 (10)0.0274 (8)0.0019 (9)0.0019 (7)0.0005 (9)
C50.0439 (10)0.0288 (10)0.0241 (8)0.0043 (10)0.0019 (7)0.0019 (9)
C60.0377 (9)0.0304 (10)0.0226 (7)0.0059 (9)0.0070 (6)0.0019 (8)
C70.0311 (8)0.0240 (9)0.0197 (7)0.0029 (8)0.0065 (6)0.0051 (7)
C80.0310 (8)0.0261 (9)0.0239 (7)0.0013 (9)0.0107 (6)0.0050 (9)
C90.0271 (7)0.0222 (9)0.0220 (7)0.0009 (8)0.0064 (6)0.0064 (8)
C100.0273 (8)0.0301 (10)0.0286 (8)0.0005 (8)0.0055 (6)0.0064 (8)
C110.0300 (8)0.0294 (11)0.0316 (9)0.0050 (8)0.0018 (7)0.0021 (8)
C120.0333 (8)0.0260 (10)0.0245 (7)0.0011 (8)0.0018 (6)0.0003 (8)
C130.0276 (8)0.0258 (9)0.0222 (7)0.0029 (8)0.0060 (6)0.0042 (8)
C140.0262 (7)0.0232 (9)0.0212 (7)0.0007 (7)0.0056 (6)0.0036 (7)
C150.0322 (9)0.0474 (13)0.0420 (10)0.0088 (10)0.0107 (8)0.0021 (11)
C160.0387 (9)0.0321 (11)0.0309 (8)0.0016 (9)0.0105 (7)0.0045 (8)
Geometric parameters (Å, º) top
O1—C11.224 (2)C8—C91.499 (3)
O2—C131.3526 (18)C9—C101.409 (3)
O2—C161.432 (2)C9—C141.422 (2)
O3—C81.225 (2)C10—C111.390 (3)
C1—C21.485 (2)C10—C151.511 (2)
C1—C141.491 (3)C11—C121.380 (2)
C2—C71.392 (2)C11—H110.9500
C2—C31.399 (3)C12—C131.393 (3)
C3—C41.382 (3)C12—H120.9500
C3—H30.9500C13—C141.416 (2)
C4—C51.394 (3)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.380 (3)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.398 (3)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C7—C81.483 (3)
C13—O2—C16117.84 (15)C11—C10—C9117.28 (16)
O1—C1—C2118.97 (17)C11—C10—C15116.89 (18)
O1—C1—C14122.39 (16)C9—C10—C15125.83 (18)
C2—C1—C14118.64 (14)C12—C11—C10122.90 (18)
C7—C2—C3119.60 (17)C12—C11—H11118.6
C7—C2—C1121.43 (15)C10—C11—H11118.6
C3—C2—C1118.96 (15)C11—C12—C13120.28 (18)
C4—C3—C2119.89 (17)C11—C12—H12119.9
C4—C3—H3120.1C13—C12—H12119.9
C2—C3—H3120.1O2—C13—C12121.67 (16)
C3—C4—C5120.35 (18)O2—C13—C14118.93 (15)
C3—C4—H4119.8C12—C13—C14119.39 (15)
C5—C4—H4119.8C13—C14—C9118.89 (15)
C6—C5—C4120.18 (18)C13—C14—C1120.61 (14)
C6—C5—H5119.9C9—C14—C1120.49 (15)
C4—C5—H5119.9C10—C15—H15A109.5
C5—C6—C7119.78 (17)C10—C15—H15B109.5
C5—C6—H6120.1H15A—C15—H15B109.5
C7—C6—H6120.1C10—C15—H15C109.5
C2—C7—C6120.19 (17)H15A—C15—H15C109.5
C2—C7—C8120.47 (16)H15B—C15—H15C109.5
C6—C7—C8119.34 (15)O2—C16—H16A109.5
O3—C8—C7119.47 (18)O2—C16—H16B109.5
O3—C8—C9121.16 (18)H16A—C16—H16B109.5
C7—C8—C9119.36 (14)O2—C16—H16C109.5
C10—C9—C14121.24 (16)H16A—C16—H16C109.5
C10—C9—C8119.22 (15)H16B—C16—H16C109.5
C14—C9—C8119.54 (15)
O1—C1—C2—C7179.01 (17)C14—C9—C10—C110.0 (3)
C14—C1—C2—C71.1 (2)C8—C9—C10—C11179.94 (16)
O1—C1—C2—C30.0 (3)C14—C9—C10—C15179.51 (18)
C14—C1—C2—C3179.87 (16)C8—C9—C10—C150.5 (3)
C7—C2—C3—C40.5 (3)C9—C10—C11—C120.1 (3)
C1—C2—C3—C4179.55 (17)C15—C10—C11—C12179.60 (18)
C2—C3—C4—C50.6 (3)C10—C11—C12—C130.5 (3)
C3—C4—C5—C61.1 (3)C16—O2—C13—C122.8 (3)
C4—C5—C6—C70.6 (3)C16—O2—C13—C14176.68 (15)
C3—C2—C7—C61.0 (3)C11—C12—C13—O2179.38 (16)
C1—C2—C7—C6179.92 (16)C11—C12—C13—C141.1 (3)
C3—C2—C7—C8178.30 (16)O2—C13—C14—C9179.34 (15)
C1—C2—C7—C80.7 (3)C12—C13—C14—C91.1 (2)
C5—C6—C7—C20.5 (3)O2—C13—C14—C11.1 (2)
C5—C6—C7—C8178.84 (17)C12—C13—C14—C1178.41 (16)
C2—C7—C8—O3177.22 (17)C10—C9—C14—C130.6 (2)
C6—C7—C8—O32.1 (3)C8—C9—C14—C13179.45 (16)
C2—C7—C8—C92.7 (3)C10—C9—C14—C1178.98 (16)
C6—C7—C8—C9177.98 (16)C8—C9—C14—C11.0 (2)
O3—C8—C9—C102.9 (3)O1—C1—C14—C131.3 (3)
C7—C8—C9—C10177.18 (16)C2—C1—C14—C13178.62 (15)
O3—C8—C9—C14177.11 (16)O1—C1—C14—C9179.17 (18)
C7—C8—C9—C142.8 (2)C2—C1—C14—C90.9 (2)

Experimental details

Crystal data
Chemical formulaC16H12O3
Mr252.26
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.8808 (4), 4.8940 (2), 13.7792 (5)
β (°) 96.136 (4)
V3)595.45 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.30 × 0.10 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.797, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
2343, 1367, 1317
Rint0.014
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.108, 1.16
No. of reflections1367
No. of parameters173
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBentley, W. H., Gardner, H. D. & Weizmann, C. (1907). J. Chem. Soc. Trans. 91, 1626–1640.  CrossRef Google Scholar
First citationFischer, O. & Ziegler, H. (1913). J. Prakt. Chem. 86, 289–297.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds