organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(2-Meth­­oxy-1-naphtho­yl)phen­yl](1-naphth­yl)methanone

aDepartment of Physics, Dr MGR Educational and Research Institute, Dr MGR University, Chennai 600 095, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 13 October 2011; accepted 15 October 2011; online 29 October 2011)

The title compound, C29H20O3, adopts an `S' conformation with a dihedral angle of 68.5 (2)° beween the two acetone planes. The central phenyl ring forms dihedral angles of 83.8 (4) and 84.5 (4)° with the naphthalene and meth­oxy-substituted naphthalene mean planes, respectively. Both carbonyl-group O atoms deviate significantly from the naphthalene moiety and the meth­oxy-substituted naphthalene moiety [0.574 (1) and −1.053 (1) Å, respectively]. The crystal packing is stabilized by C—H⋯O inter­molecular inter­actions, generating C(7) chain and R22(10) graph-set motifs.

Related literature

For the uses and biological importance of diketones, see: Bennett et al. (1999[Bennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847-1852.]). For related structures, see: Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.]); Jagadeesan et al. (2011[Jagadeesan, G., Sethusankar, K., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2737.]); Judas et al. (1995[Judas, N., Kaitner, B. & Mestrovic, E. (1995). Acta Cryst. C51, 2123-2125.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C29H20O3

  • Mr = 416.45

  • Monoclinic, P 21 /n

  • a = 8.3950 (3) Å

  • b = 8.9983 (4) Å

  • c = 28.5375 (11) Å

  • β = 97.188 (2)°

  • V = 2138.80 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 26364 measured reflections

  • 6299 independent reflections

  • 3875 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.137

  • S = 1.00

  • 6270 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.49 3.392 (2) 164
C13—H13⋯O1ii 0.93 2.52 3.440 (2) 170
C27—H27⋯O2iii 0.93 2.51 3.262 (3) 138
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diketones are popular in organic synthesis, for their applications in biology and medicine. They are known to exhibit antioxidant, antitumour and antibacterial activities (Bennett et al., 1999).

X-ray analysis confirms the molecular structure and atom connectivity of the title compound as illustrated in the Fig. 1. The central phenyl ring (C12–C17) of the compound forms dihedral angles of 83.8 (4)° and 84.5 (4)° with the naphthalene moiety (C1–C10) and methoxy substituted naphthalene moiety (C19–28), respectively. The central phenyl ring (C12–C17) forms dihedral angles of 69.7 (5)° and 11.1 (5)° with the mean planes of the ketone groups, (C10–C12/O1) and (C17–C19/O2), respectively. The dihedral angle between the methoxy substituted naphthalene moiety (C19–C28) and naphthlene moiety (C1–C10) is 64.2 (4)°.

The two benzene rings (C1—C4/C9/C10) and (C4–C9) are almost coplanar with a dihedral angle of 2.26 (6)° between them. The atoms C29, O2 and O3 are having deviations of 0.363 (3) Å, -1.053 (1)Å and 0.101 (1)Å from the mean plane of the methoxy substituted naphthalene ring (C19–C28), respectively. The atom O1 deviates by 0.574 (1)Å from the plane of the naphthlene ring (C1–C10). The C10–C11 and C18–C19 bond lengths of 1.49 (2)Å and 1.50 (2)Å respectively and can be considered as single C(sp2)–C(sp2) bond distances. The molecule possesses distorted S–conformation in which C19/C18/C17/C12/C11/C10/O1/O2 are in a single plane, which is determined by the dihedral angle of 68.5 (2)° beween the planes defined by C19/C18/C17/O2 and that through C10/C11/C12/O1 (Judas et al., 1995).The title compound exhibits the structural similarities with the reported related structures (Tsumuki et al., 2011 & Jagadeesan et al., 2011).

The crystal packing is stabilized by C–H···O interactions (Table 1). The C3–H3···O1i interaction generates a C(7) chain along the a axis and the C13–H13···O1ii hydrogen bond generates R22(10) graphset motifs (Bernstein et al., 1995); the carbonyl-group O1 atom is involved in bifurcated hydrogen bonding. The Symmetry codes are: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z; (iii) -x + 1/2, y + 1/2, -z + 1/2. The packing view of the compound is shown in (Fig. 2).

Related literature top

For the uses and biological importance of diketones, see: Bennett et al. (1999). For related structures, see: Tsumuki et al. (2011); Jagadeesan et al. (2011); Judas et al. (1995). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a stirred suspension of 1-(2-methoxy-1-naphthoyl)phenyl-1-naphthyl- 2-benzofuran (1 g, 3.22 mmol) in dry THF (20 ml), lead tetraaccetate (1.52 g, 3.42 mmol) was added and refluxed at 343 K for half an hour. The reaction mixture was then poured into water (200 ml) and extracted with ethyl acetate (2x20 ml), washed with brine solution and dried (Na2SO4). The removal of solvent in vacuo afforded crude product. The crude product upon crystallization from methanol furnished the tittle compound as a colorless solid.

Refinement top

Hydrogen atoms were placed in calculated positions with C–H = 0.93Å and 0.96Å and refined using a the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for the methyl group and Uiso(H) = 1.2 Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXL97 [SHELXS97?] (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The packing arrangement of the title compound. Dashed lines indicates the C–H···O interactions. Symmetry code: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z; (iii) -x + 1/2, y + 1/2, -z + 1/2.
[2-(2-Methoxy-1-naphthoyl)phenyl](1-naphthyl)methanone top
Crystal data top
C29H20O3F(000) = 872
Mr = 416.45Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3875 reflections
a = 8.3950 (3) Åθ = 1.4–30.1°
b = 8.9983 (4) ŵ = 0.08 mm1
c = 28.5375 (11) ÅT = 293 K
β = 97.188 (2)°Block, colourless
V = 2138.80 (15) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3875 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 30.1°, θmin = 1.4°
ω scansh = 1011
26364 measured reflectionsk = 1212
6299 independent reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.4431P]
where P = (Fo2 + 2Fc2)/3
6270 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C29H20O3V = 2138.80 (15) Å3
Mr = 416.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3950 (3) ŵ = 0.08 mm1
b = 8.9983 (4) ÅT = 293 K
c = 28.5375 (11) Å0.30 × 0.25 × 0.20 mm
β = 97.188 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3875 reflections with I > 2σ(I)
26364 measured reflectionsRint = 0.036
6299 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
6270 reflectionsΔρmin = 0.17 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15231 (17)0.63183 (17)0.06709 (6)0.0491 (4)
H10.20030.72510.06960.059*
C20.01600 (18)0.6217 (2)0.06134 (7)0.0585 (4)
H20.07800.70750.06060.070*
C30.08746 (17)0.4876 (2)0.05692 (6)0.0523 (4)
H30.19890.48160.05210.063*
C40.00426 (16)0.35663 (17)0.05949 (5)0.0437 (3)
C50.0706 (2)0.2162 (2)0.05524 (7)0.0606 (5)
H50.18200.21080.04990.073*
C60.0158 (2)0.0898 (2)0.05872 (8)0.0763 (6)
H60.03590.00160.05530.092*
C70.1836 (2)0.0961 (2)0.06743 (8)0.0708 (5)
H70.24260.00840.07070.085*
C80.26131 (18)0.22922 (17)0.07110 (6)0.0507 (4)
H80.37280.23130.07680.061*
C90.17494 (15)0.36407 (15)0.06640 (5)0.0367 (3)
C100.24751 (14)0.50808 (15)0.06903 (5)0.0356 (3)
C110.42381 (15)0.52955 (15)0.07111 (5)0.0360 (3)
C120.49178 (14)0.68277 (14)0.08141 (5)0.0335 (3)
C130.54639 (16)0.75872 (17)0.04437 (5)0.0430 (3)
H130.53860.71510.01460.052*
C140.61245 (17)0.89905 (18)0.05125 (5)0.0476 (4)
H140.64830.94950.02610.057*
C150.62522 (18)0.96406 (17)0.09500 (6)0.0509 (4)
H150.66961.05850.09950.061*
C160.57230 (17)0.88951 (16)0.13223 (5)0.0458 (3)
H160.58150.93400.16190.055*
C170.50522 (14)0.74850 (14)0.12605 (5)0.0351 (3)
C180.45546 (15)0.66581 (15)0.16664 (5)0.0383 (3)
C190.44871 (19)0.74572 (17)0.21243 (5)0.0473 (4)
C200.5827 (2)0.74335 (17)0.24785 (5)0.0514 (4)
C210.7276 (2)0.67257 (19)0.24152 (6)0.0592 (4)
H210.73520.62020.21380.071*
C220.8574 (3)0.6795 (2)0.27548 (7)0.0767 (6)
H220.95270.63290.27060.092*
C230.8476 (4)0.7560 (3)0.31743 (8)0.0913 (8)
H230.93690.76100.34020.110*
C240.7105 (4)0.8225 (2)0.32528 (7)0.0904 (8)
H240.70590.87180.35370.108*
C250.5721 (3)0.8193 (2)0.29106 (6)0.0696 (5)
C260.4270 (4)0.8903 (3)0.29698 (8)0.0916 (8)
H260.41790.93790.32550.110*
C270.3004 (3)0.8919 (3)0.26284 (9)0.0871 (7)
H270.20610.94030.26790.104*
C280.3114 (2)0.8202 (2)0.21948 (7)0.0639 (5)
C290.0565 (3)0.9120 (4)0.18389 (11)0.1213 (11)
H29A0.00350.88710.21080.182*
H29B0.01660.89890.15550.182*
H29C0.09131.01370.18630.182*
O10.51456 (11)0.43299 (12)0.06066 (4)0.0542 (3)
O20.42381 (13)0.53442 (11)0.16317 (4)0.0503 (3)
O30.19135 (16)0.81810 (18)0.18259 (6)0.0838 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (7)0.0401 (8)0.0693 (11)0.0038 (6)0.0026 (7)0.0014 (7)
C20.0351 (7)0.0559 (10)0.0836 (13)0.0070 (7)0.0041 (7)0.0041 (9)
C30.0290 (6)0.0676 (11)0.0598 (10)0.0062 (7)0.0033 (6)0.0063 (8)
C40.0375 (7)0.0522 (9)0.0420 (8)0.0141 (6)0.0069 (6)0.0021 (7)
C50.0463 (8)0.0634 (11)0.0731 (12)0.0245 (8)0.0110 (8)0.0027 (9)
C60.0722 (12)0.0518 (11)0.1073 (17)0.0308 (10)0.0205 (11)0.0035 (11)
C70.0673 (11)0.0412 (9)0.1065 (16)0.0086 (8)0.0215 (10)0.0029 (10)
C80.0452 (8)0.0419 (8)0.0661 (11)0.0069 (6)0.0115 (7)0.0009 (7)
C90.0355 (6)0.0399 (7)0.0349 (7)0.0074 (5)0.0058 (5)0.0014 (6)
C100.0304 (6)0.0382 (7)0.0378 (7)0.0053 (5)0.0025 (5)0.0038 (6)
C110.0329 (6)0.0389 (7)0.0368 (7)0.0056 (5)0.0064 (5)0.0080 (6)
C120.0274 (5)0.0355 (7)0.0384 (7)0.0051 (5)0.0066 (5)0.0052 (6)
C130.0413 (7)0.0510 (9)0.0375 (7)0.0073 (6)0.0087 (6)0.0048 (6)
C140.0480 (8)0.0503 (9)0.0466 (9)0.0121 (7)0.0137 (6)0.0055 (7)
C150.0554 (9)0.0406 (8)0.0590 (10)0.0179 (7)0.0154 (7)0.0045 (7)
C160.0531 (8)0.0402 (8)0.0456 (8)0.0131 (6)0.0121 (6)0.0104 (6)
C170.0345 (6)0.0339 (7)0.0379 (7)0.0054 (5)0.0089 (5)0.0053 (5)
C180.0382 (7)0.0380 (7)0.0399 (7)0.0026 (5)0.0098 (6)0.0026 (6)
C190.0647 (9)0.0411 (8)0.0397 (8)0.0047 (7)0.0207 (7)0.0036 (6)
C200.0812 (11)0.0394 (8)0.0356 (8)0.0111 (8)0.0146 (7)0.0007 (6)
C210.0761 (11)0.0516 (10)0.0475 (10)0.0066 (9)0.0009 (8)0.0005 (8)
C220.0938 (14)0.0626 (12)0.0669 (13)0.0111 (11)0.0165 (11)0.0125 (10)
C230.142 (2)0.0629 (13)0.0579 (13)0.0311 (14)0.0316 (14)0.0148 (11)
C240.173 (3)0.0596 (13)0.0351 (10)0.0294 (15)0.0001 (13)0.0008 (9)
C250.1247 (17)0.0506 (10)0.0361 (9)0.0165 (11)0.0207 (10)0.0034 (7)
C260.156 (2)0.0736 (14)0.0544 (12)0.0021 (15)0.0489 (15)0.0182 (11)
C270.1146 (18)0.0784 (15)0.0797 (16)0.0114 (13)0.0576 (14)0.0141 (12)
C280.0750 (11)0.0614 (11)0.0618 (11)0.0034 (9)0.0339 (10)0.0052 (9)
C290.0917 (17)0.142 (3)0.139 (3)0.0545 (17)0.0487 (16)0.023 (2)
O10.0376 (5)0.0475 (6)0.0803 (8)0.0058 (4)0.0181 (5)0.0230 (6)
O20.0664 (7)0.0387 (6)0.0471 (6)0.0084 (5)0.0125 (5)0.0002 (5)
O30.0645 (8)0.0969 (11)0.0935 (11)0.0205 (8)0.0227 (8)0.0104 (9)
Geometric parameters (Å, º) top
C1—C101.3678 (19)C15—H150.9300
C1—C21.405 (2)C16—C171.3904 (18)
C1—H10.9300C16—H160.9300
C2—C31.347 (2)C17—C181.4804 (19)
C2—H20.9300C18—O21.2131 (16)
C3—C41.405 (2)C18—C191.499 (2)
C3—H30.9300C19—C281.370 (2)
C4—C51.410 (2)C19—C201.415 (2)
C4—C91.4233 (18)C20—C211.404 (2)
C5—C61.345 (3)C20—C251.422 (2)
C5—H50.9300C21—C221.366 (3)
C6—C71.401 (3)C21—H210.9300
C6—H60.9300C22—C231.392 (3)
C7—C81.362 (2)C22—H220.9300
C7—H70.9300C23—C241.340 (4)
C8—C91.411 (2)C23—H230.9300
C8—H80.9300C24—C251.421 (3)
C9—C101.4298 (18)C24—H240.9300
C10—C111.4864 (17)C25—C261.404 (3)
C11—O11.2170 (16)C26—C271.349 (4)
C11—C121.5069 (18)C26—H260.9300
C12—C131.3842 (19)C27—C281.409 (3)
C12—C171.3961 (18)C27—H270.9300
C13—C141.383 (2)C28—O31.364 (2)
C13—H130.9300C29—O31.417 (3)
C14—C151.371 (2)C29—H29A0.9600
C14—H140.9300C29—H29B0.9600
C15—C161.376 (2)C29—H29C0.9600
C10—C1—C2121.74 (14)C15—C16—H16119.6
C10—C1—H1119.1C17—C16—H16119.6
C2—C1—H1119.1C16—C17—C12119.18 (12)
C3—C2—C1119.91 (15)C16—C17—C18120.59 (12)
C3—C2—H2120.0C12—C17—C18120.18 (11)
C1—C2—H2120.0O2—C18—C17120.42 (12)
C2—C3—C4120.81 (13)O2—C18—C19120.46 (13)
C2—C3—H3119.6C17—C18—C19119.10 (12)
C4—C3—H3119.6C28—C19—C20120.71 (15)
C3—C4—C5120.80 (13)C28—C19—C18119.15 (15)
C3—C4—C9120.24 (13)C20—C19—C18120.14 (13)
C5—C4—C9118.96 (14)C21—C20—C19122.59 (14)
C6—C5—C4121.39 (15)C21—C20—C25118.58 (17)
C6—C5—H5119.3C19—C20—C25118.81 (17)
C4—C5—H5119.3C22—C21—C20120.98 (18)
C5—C6—C7119.99 (16)C22—C21—H21119.5
C5—C6—H6120.0C20—C21—H21119.5
C7—C6—H6120.0C21—C22—C23120.3 (2)
C8—C7—C6120.71 (17)C21—C22—H22119.8
C8—C7—H7119.6C23—C22—H22119.8
C6—C7—H7119.6C24—C23—C22120.6 (2)
C7—C8—C9120.89 (15)C24—C23—H23119.7
C7—C8—H8119.6C22—C23—H23119.7
C9—C8—H8119.6C23—C24—C25121.4 (2)
C8—C9—C4117.97 (12)C23—C24—H24119.3
C8—C9—C10124.32 (12)C25—C24—H24119.3
C4—C9—C10117.70 (12)C26—C25—C20118.2 (2)
C1—C10—C9119.52 (11)C26—C25—C24123.7 (2)
C1—C10—C11118.01 (12)C20—C25—C24118.1 (2)
C9—C10—C11122.38 (12)C27—C26—C25122.34 (18)
O1—C11—C10123.24 (12)C27—C26—H26118.8
O1—C11—C12117.88 (11)C25—C26—H26118.8
C10—C11—C12118.53 (11)C26—C27—C28119.8 (2)
C13—C12—C17119.41 (12)C26—C27—H27120.1
C13—C12—C11117.14 (12)C28—C27—H27120.1
C17—C12—C11123.43 (11)O3—C28—C19115.73 (15)
C14—C13—C12120.49 (13)O3—C28—C27124.13 (18)
C14—C13—H13119.8C19—C28—C27120.1 (2)
C12—C13—H13119.8O3—C29—H29A109.5
C15—C14—C13120.21 (14)O3—C29—H29B109.5
C15—C14—H14119.9H29A—C29—H29B109.5
C13—C14—H14119.9O3—C29—H29C109.5
C14—C15—C16119.94 (14)H29A—C29—H29C109.5
C14—C15—H15120.0H29B—C29—H29C109.5
C16—C15—H15120.0C28—O3—C29119.16 (19)
C15—C16—C17120.77 (14)
C10—C1—C2—C30.9 (3)C11—C12—C17—C16178.86 (12)
C1—C2—C3—C42.1 (3)C13—C12—C17—C18176.75 (12)
C2—C3—C4—C5179.49 (17)C11—C12—C17—C181.67 (19)
C2—C3—C4—C90.6 (2)C16—C17—C18—O2166.95 (14)
C3—C4—C5—C6178.45 (18)C12—C17—C18—O210.20 (19)
C9—C4—C5—C61.6 (3)C16—C17—C18—C1911.53 (19)
C4—C5—C6—C70.9 (3)C12—C17—C18—C19171.32 (12)
C5—C6—C7—C81.9 (3)O2—C18—C19—C2894.73 (19)
C6—C7—C8—C90.2 (3)C17—C18—C19—C2886.79 (18)
C7—C8—C9—C42.3 (2)O2—C18—C19—C2085.03 (18)
C7—C8—C9—C10178.96 (16)C17—C18—C19—C2093.45 (17)
C3—C4—C9—C8176.89 (14)C28—C19—C20—C21177.85 (16)
C5—C4—C9—C83.2 (2)C18—C19—C20—C212.4 (2)
C3—C4—C9—C101.9 (2)C28—C19—C20—C250.2 (2)
C5—C4—C9—C10177.98 (14)C18—C19—C20—C25179.52 (14)
C2—C1—C10—C91.7 (2)C19—C20—C21—C22176.34 (16)
C2—C1—C10—C11174.95 (15)C25—C20—C21—C221.7 (2)
C8—C9—C10—C1175.73 (15)C20—C21—C22—C230.7 (3)
C4—C9—C10—C13.0 (2)C21—C22—C23—C240.7 (3)
C8—C9—C10—C117.8 (2)C22—C23—C24—C251.0 (3)
C4—C9—C10—C11173.44 (12)C21—C20—C25—C26179.73 (17)
C1—C10—C11—O1160.14 (15)C19—C20—C25—C261.6 (2)
C9—C10—C11—O116.4 (2)C21—C20—C25—C241.4 (2)
C1—C10—C11—C1212.87 (19)C19—C20—C25—C24176.73 (16)
C9—C10—C11—C12170.62 (12)C23—C24—C25—C26178.3 (2)
O1—C11—C12—C1365.58 (17)C23—C24—C25—C200.1 (3)
C10—C11—C12—C13107.81 (14)C20—C25—C26—C271.8 (3)
O1—C11—C12—C17112.87 (15)C24—C25—C26—C27176.4 (2)
C10—C11—C12—C1773.74 (17)C25—C26—C27—C280.2 (4)
C17—C12—C13—C140.6 (2)C20—C19—C28—O3178.49 (15)
C11—C12—C13—C14179.09 (12)C18—C19—C28—O31.7 (2)
C12—C13—C14—C150.3 (2)C20—C19—C28—C271.9 (3)
C13—C14—C15—C160.1 (2)C18—C19—C28—C27177.88 (16)
C14—C15—C16—C170.2 (2)C26—C27—C28—O3178.7 (2)
C15—C16—C17—C120.1 (2)C26—C27—C28—C191.7 (3)
C15—C16—C17—C18177.11 (14)C19—C28—O3—C29169.66 (19)
C13—C12—C17—C160.44 (19)C27—C28—O3—C2910.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.493.392 (2)164
C13—H13···O1ii0.932.523.440 (2)170
C27—H27···O2iii0.932.513.262 (3)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H20O3
Mr416.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.3950 (3), 8.9983 (4), 28.5375 (11)
β (°) 97.188 (2)
V3)2138.80 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26364, 6299, 3875
Rint0.036
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.00
No. of reflections6270
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXL97 [SHELXS97?] (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.493.392 (2)164
C13—H13···O1ii0.932.523.440 (2)170
C27—H27···O2iii0.932.513.262 (3)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

GJ and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, HOD, Department of Physics, for providing facilities in the department to carry out this work.

References

First citationBennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJagadeesan, G., Sethusankar, K., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2737.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJudas, N., Kaitner, B. & Mestrovic, E. (1995). Acta Cryst. C51, 2123–2125.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds