organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2,3-di­chloro­phen­yl)-2-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 14 October 2011; accepted 17 October 2011; online 29 October 2011)

The torsion angle of the C—SO2—NH—C moiety in the title compound, C13H10Cl3NO2S, is 50.4 (2)°. The sulfonyl and aniline benzene rings are tilted relative to each other by 69.6 (1)°. The crystal structure is stabilized by N—H⋯O hydrogen bonds, linking the mol­ecules into zigzag chains parallel to the b axis.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600-606.]). For hydrogen-bonding preferences of sulfon­amides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.]). For N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]). For N-(ar­yl)-aryl­sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]); Rodrigues et al. (2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2893.]); Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]). For N-(chloro)-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. A, 26, 403-425.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10Cl3NO2S

  • Mr = 350.63

  • Monoclinic, P 21 /c

  • a = 9.2007 (9) Å

  • b = 9.8803 (9) Å

  • c = 16.163 (2) Å

  • β = 99.286 (9)°

  • V = 1450.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.48 × 0.44 × 0.36 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.708, Tmax = 0.768

  • 5387 measured reflections

  • 2966 independent reflections

  • 2381 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.03

  • 2966 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 2.64 3.446 (2) 161
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The sulfonamide moiety is the constituent of many biologically significant compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Rodrigues et al., 2011; Shetty & Gowda, 2005) and N-(chloro)-arylsulfonamides (Gowda & Kumar, 2003), in the present work, the crystal structure of 4-Chloro-2-methyl-N-(2,3-dichlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1).

In (I), the conformation of the N—C bond in the C—SO2—NH—C segment has trans and gauche torsion angles with the SO bonds. Further, the the N—H bond is syn to the ortho-methyl group in the sulfonyl benzene ring as well as to the ortho-Cl and meta-Cl atoms in the anilino ring of (I). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 50.35 (20)°, compared to the value of -52.0 (2)° in 2,4-Dichloro-N-(2,3-dichlorophenyl)benzenesulfonamide (II) (Rodrigues et al., 2011).

The sulfonyl and the aniline benzene rings are tilted relative to each other by 69.6 (1)°, compared to the value of 67.7 (1)° in (II).

The other bond parameters in (I) are similar to those observed in (II) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The crystal structure is stabilized by N—H···O hydrogen bonds linking the molecules to zigzag chains parallel to the b-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000). For N-(aryl)-methanesulfonamides, see: Gowda et al. (2007). For N-(aryl)-arylsulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006); Rodrigues et al. (2011); Shetty & Gowda (2005). For N-(chloro)-arylsulfonamides, see: Gowda & Kumar (2003).

Experimental top

The solution of m-chlorotoluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2-methyl-4-chlorobenzenesulfonylchloride was treated with 2,3-dichlorolaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 4-chloro-2-methyl-N- (2,3-dichlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

Prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its coordinates were refined with the N—H distance restrained to 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(2,3-dichlorophenyl)-2-methylbenzenesulfonamide top
Crystal data top
C13H10Cl3NO2SF(000) = 712
Mr = 350.63Dx = 1.606 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2185 reflections
a = 9.2007 (9) Åθ = 2.6–27.8°
b = 9.8803 (9) ŵ = 0.77 mm1
c = 16.163 (2) ÅT = 293 K
β = 99.286 (9)°Prism, colourless
V = 1450.1 (3) Å30.48 × 0.44 × 0.36 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2966 independent reflections
Radiation source: fine-focus sealed tube2381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 117
Tmin = 0.708, Tmax = 0.768k = 125
5387 measured reflectionsl = 1420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.5987P]
where P = (Fo2 + 2Fc2)/3
2966 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
C13H10Cl3NO2SV = 1450.1 (3) Å3
Mr = 350.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2007 (9) ŵ = 0.77 mm1
b = 9.8803 (9) ÅT = 293 K
c = 16.163 (2) Å0.48 × 0.44 × 0.36 mm
β = 99.286 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2966 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2381 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.768Rint = 0.011
5387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
2966 reflectionsΔρmin = 0.41 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6255 (2)0.1548 (2)0.37135 (13)0.0382 (4)
C20.5972 (2)0.1912 (2)0.45097 (13)0.0420 (5)
C30.6623 (3)0.1129 (2)0.51881 (15)0.0515 (6)
H30.64470.13350.57240.062*
C40.7520 (3)0.0060 (3)0.50742 (16)0.0575 (6)
C50.7808 (3)0.0285 (3)0.42980 (18)0.0643 (7)
H50.84290.10060.42330.077*
C60.7158 (3)0.0459 (2)0.36098 (16)0.0519 (6)
H60.73290.02260.30760.062*
C70.7939 (2)0.4027 (2)0.29919 (12)0.0357 (4)
C80.8590 (2)0.5020 (2)0.35427 (12)0.0362 (4)
C91.0112 (2)0.5177 (2)0.36816 (13)0.0405 (5)
C101.0985 (2)0.4344 (3)0.32855 (14)0.0483 (6)
H101.20030.44450.33840.058*
C111.0338 (2)0.3359 (3)0.27425 (15)0.0517 (6)
H111.09280.27960.24760.062*
C120.8825 (2)0.3198 (2)0.25888 (14)0.0466 (5)
H120.84020.25370.22170.056*
C130.5027 (3)0.3141 (3)0.46785 (15)0.0528 (6)
H13A0.40520.30430.43670.063*
H13B0.54650.39550.45080.063*
H13C0.49750.31890.52660.063*
N10.63792 (19)0.39045 (18)0.28387 (12)0.0434 (4)
H1N0.593 (2)0.459 (2)0.2983 (15)0.052*
O10.40072 (16)0.28154 (19)0.28184 (11)0.0558 (4)
O20.58495 (18)0.16949 (19)0.21024 (10)0.0552 (4)
Cl10.83346 (12)0.08759 (9)0.59340 (6)0.1014 (3)
Cl20.75060 (6)0.60530 (6)0.40496 (4)0.05444 (18)
Cl31.09147 (7)0.64184 (7)0.43607 (4)0.05939 (19)
S10.55050 (5)0.24510 (6)0.27992 (3)0.04145 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (10)0.0377 (11)0.0424 (11)0.0063 (8)0.0075 (8)0.0061 (9)
C20.0361 (11)0.0435 (12)0.0471 (12)0.0097 (9)0.0092 (9)0.0092 (10)
C30.0536 (14)0.0553 (14)0.0454 (12)0.0198 (11)0.0072 (10)0.0058 (11)
C40.0669 (16)0.0425 (13)0.0581 (15)0.0162 (12)0.0052 (12)0.0066 (12)
C50.0714 (18)0.0377 (13)0.0811 (19)0.0072 (12)0.0043 (14)0.0030 (13)
C60.0614 (15)0.0413 (12)0.0536 (14)0.0035 (11)0.0114 (11)0.0101 (11)
C70.0299 (9)0.0394 (11)0.0382 (10)0.0023 (8)0.0064 (8)0.0067 (9)
C80.0366 (10)0.0351 (10)0.0385 (10)0.0038 (8)0.0102 (8)0.0084 (9)
C90.0359 (10)0.0446 (12)0.0400 (11)0.0040 (9)0.0027 (8)0.0117 (9)
C100.0295 (10)0.0634 (15)0.0532 (13)0.0026 (10)0.0108 (9)0.0152 (12)
C110.0422 (12)0.0577 (15)0.0594 (14)0.0086 (11)0.0204 (10)0.0010 (12)
C120.0451 (12)0.0482 (13)0.0486 (12)0.0022 (10)0.0142 (10)0.0042 (10)
C130.0462 (12)0.0673 (16)0.0492 (13)0.0031 (11)0.0207 (10)0.0198 (12)
N10.0309 (9)0.0420 (10)0.0571 (11)0.0032 (8)0.0064 (8)0.0000 (9)
O10.0284 (7)0.0726 (12)0.0650 (10)0.0027 (7)0.0030 (7)0.0022 (9)
O20.0537 (9)0.0688 (11)0.0425 (9)0.0053 (8)0.0058 (7)0.0155 (8)
Cl10.1241 (8)0.0777 (6)0.0892 (6)0.0093 (5)0.0225 (5)0.0294 (5)
Cl20.0470 (3)0.0491 (3)0.0684 (4)0.0072 (2)0.0129 (3)0.0117 (3)
Cl30.0540 (3)0.0640 (4)0.0561 (4)0.0173 (3)0.0032 (3)0.0018 (3)
S10.0315 (3)0.0493 (3)0.0426 (3)0.0035 (2)0.0030 (2)0.0064 (2)
Geometric parameters (Å, º) top
C1—C61.386 (3)C8—Cl21.724 (2)
C1—C21.401 (3)C9—C101.377 (3)
C1—S11.768 (2)C9—Cl31.730 (2)
C2—C31.396 (3)C10—C111.379 (3)
C2—C131.543 (3)C10—H100.9300
C3—C41.371 (4)C11—C121.383 (3)
C3—H30.9300C11—H110.9300
C4—C51.366 (4)C12—H120.9300
C4—Cl11.735 (3)C13—H13A0.9600
C5—C61.386 (4)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—H60.9300N1—S11.6422 (19)
C7—C121.389 (3)N1—H1N0.847 (16)
C7—C81.393 (3)O1—S11.4295 (16)
C7—N11.422 (2)O2—S11.4291 (17)
C8—C91.391 (3)
C6—C1—C2121.0 (2)C8—C9—Cl3119.82 (17)
C6—C1—S1116.83 (17)C9—C10—C11119.6 (2)
C2—C1—S1122.18 (17)C9—C10—H10120.2
C3—C2—C1117.3 (2)C11—C10—H10120.2
C3—C2—C13118.7 (2)C10—C11—C12120.9 (2)
C1—C2—C13124.0 (2)C10—C11—H11119.6
C4—C3—C2120.9 (2)C12—C11—H11119.6
C4—C3—H3119.6C11—C12—C7119.8 (2)
C2—C3—H3119.6C11—C12—H12120.1
C5—C4—C3121.7 (2)C7—C12—H12120.1
C5—C4—Cl1118.7 (2)C2—C13—H13A109.5
C3—C4—Cl1119.6 (2)C2—C13—H13B109.5
C4—C5—C6118.9 (2)H13A—C13—H13B109.5
C4—C5—H5120.6C2—C13—H13C109.5
C6—C5—H5120.6H13A—C13—H13C109.5
C5—C6—C1120.3 (2)H13B—C13—H13C109.5
C5—C6—H6119.9C7—N1—S1123.75 (15)
C1—C6—H6119.9C7—N1—H1N114.1 (17)
C12—C7—C8119.38 (18)S1—N1—H1N116.9 (17)
C12—C7—N1121.35 (19)O2—S1—O1119.07 (10)
C8—C7—N1119.24 (18)O2—S1—N1108.56 (11)
C9—C8—C7119.94 (19)O1—S1—N1104.29 (10)
C9—C8—Cl2120.11 (17)O2—S1—C1106.77 (10)
C7—C8—Cl2119.94 (15)O1—S1—C1110.90 (10)
C10—C9—C8120.4 (2)N1—S1—C1106.62 (9)
C10—C9—Cl3119.81 (17)
C6—C1—C2—C30.5 (3)C7—C8—C9—Cl3179.56 (15)
S1—C1—C2—C3179.90 (15)Cl2—C8—C9—Cl30.3 (2)
C6—C1—C2—C13177.7 (2)C8—C9—C10—C110.6 (3)
S1—C1—C2—C131.7 (3)Cl3—C9—C10—C11179.77 (17)
C1—C2—C3—C40.9 (3)C9—C10—C11—C120.2 (4)
C13—C2—C3—C4177.4 (2)C10—C11—C12—C70.7 (4)
C2—C3—C4—C50.2 (4)C8—C7—C12—C110.5 (3)
C2—C3—C4—Cl1179.02 (17)N1—C7—C12—C11179.0 (2)
C3—C4—C5—C60.8 (4)C12—C7—N1—S145.0 (3)
Cl1—C4—C5—C6179.9 (2)C8—C7—N1—S1136.50 (18)
C4—C5—C6—C11.2 (4)C7—N1—S1—O264.3 (2)
C2—C1—C6—C50.5 (4)C7—N1—S1—O1167.74 (17)
S1—C1—C6—C5178.9 (2)C7—N1—S1—C150.3 (2)
C12—C7—C8—C90.3 (3)C6—C1—S1—O28.5 (2)
N1—C7—C8—C9178.25 (18)C2—C1—S1—O2172.06 (17)
C12—C7—C8—Cl2179.84 (16)C6—C1—S1—O1139.71 (18)
N1—C7—C8—Cl21.6 (3)C2—C1—S1—O140.9 (2)
C7—C8—C9—C100.8 (3)C6—C1—S1—N1107.36 (18)
Cl2—C8—C9—C10179.27 (16)C2—C1—S1—N172.04 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.852.643.446 (2)161
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10Cl3NO2S
Mr350.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.2007 (9), 9.8803 (9), 16.163 (2)
β (°) 99.286 (9)
V3)1450.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.48 × 0.44 × 0.36
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.708, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
5387, 2966, 2381
Rint0.011
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.03
No. of reflections2966
No. of parameters184
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.852.643.446 (2)160.8
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS fellowship.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. A, 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds