organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-4-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 October 2011; accepted 19 October 2011; online 29 October 2011)

In the title compound, C14H12ClNO, the aromatic rings make a dihedral angle of 59.25 (5)°. The methyl group is disordered over two equally occupied positions. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into infinite C(4) chains running along the a axis.

Related literature

For preparation of the title compound, see: Gowda, Jyothi et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For studies of the effects of substituents on the structure and other aspects of N-(ar­yl)amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]); of N-(ar­yl)methane­sulfonamides, see: Jayalakshmi & Gowda (2004[Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491-500.]); of N-(ar­yl)aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]); and of N-chloro­aryl­sulfonamides, see: Gowda, D'Souza & Kumar (2003[Gowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51-56.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Triclinic, [P \overline 1]

  • a = 5.3837 (3) Å

  • b = 7.7382 (5) Å

  • c = 15.0551 (8) Å

  • α = 83.146 (5)°

  • β = 80.436 (4)°

  • γ = 89.527 (5)°

  • V = 614.03 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Oxford Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.916, Tmax = 0.952

  • 10437 measured reflections

  • 2506 independent reflections

  • 1947 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.152

  • S = 1.08

  • 2506 reflections

  • 159 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (2) 2.42 (2) 3.184 (2) 148 (2)
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2007; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda, D'Souza & Kumar, 2003), in the present work, the crystal structure of N-(4-Chlorophenyl)-4-methylbenzamide, (I), has been determined (Fig. 1).

In (I), the N—H and CO bonds are trans to each other. The two aromatic rings make a dihedral angle of 59.25 (5)°, while the central amide core –NH—C(O)– group is twisted by 30.85 (8)° and 28.90 (9)° out of the planes of the 4-chlorphenyl and 4-methyphenyl rings, respectively.

The methyl group is disordered over two equally occupied positions.

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the a-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For preparation of the title compound, see: Gowda, Jyothi et al. (2003). For studies of the effects of substituents on the structure and other aspects of N-(aryl)amides, see: Bowes et al. (2003); Gowda et al. (2007); Saeed et al. (2010); of N-(aryl)methanesulfonamides, see: Jayalakshmi & Gowda (2004); of N-(aryl)arylsulfonamides, see: Shetty & Gowda (2005); and of N-chloroarylsulfonamides, see: Gowda, D'Souza & Kumar (2003).

Experimental top

The title compound was prepared according to the method described by Gowda, Jyothi et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms except the amide H atom were placed in calculated positions with C—H distances of 0.93 Å (C aromatic), 0.96 Å (C methyl) and constrained to ride on their parent atoms.

The methyl groups of the aromatic ring is disordered over two equally occupied positions rotated with respect to each other by 60°.

The amide H atom was found in a difference map and it was refined isotropically with the N—H distance restrained to 0.86 (2) Å. The Uiso(H) values were set at 1.2Ueq(C aromatic) and 1.5Ueq(C methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view of the title compound. Molecular chains along a-axis are generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms have been omitted.
N-(4-Chlorophenyl)-4-methylbenzamide top
Crystal data top
C14H12ClNOZ = 2
Mr = 245.70F(000) = 256
Triclinic, P1Dx = 1.329 Mg m3
a = 5.3837 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7382 (5) ÅCell parameters from 2506 reflections
c = 15.0551 (8) Åθ = 4.2–26.4°
α = 83.146 (5)°µ = 0.29 mm1
β = 80.436 (4)°T = 295 K
γ = 89.527 (5)°Plate, colourless
V = 614.03 (6) Å30.40 × 0.30 × 0.20 mm
Data collection top
Oxford Xcalibur
diffractometer
2506 independent reflections
Radiation source: fine-focus sealed tube1947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 0 pixels mm-1θmax = 26.4°, θmin = 4.2°
ω scans with κ offsetsh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 99
Tmin = 0.916, Tmax = 0.952l = 1818
10437 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0853P)2 + 0.159P]
where P = (Fo2 + 2Fc2)/3
2506 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C14H12ClNOγ = 89.527 (5)°
Mr = 245.70V = 614.03 (6) Å3
Triclinic, P1Z = 2
a = 5.3837 (3) ÅMo Kα radiation
b = 7.7382 (5) ŵ = 0.29 mm1
c = 15.0551 (8) ÅT = 295 K
α = 83.146 (5)°0.40 × 0.30 × 0.20 mm
β = 80.436 (4)°
Data collection top
Oxford Xcalibur
diffractometer
2506 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1947 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.952Rint = 0.019
10437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.43 e Å3
2506 reflectionsΔρmin = 0.26 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3445 (3)0.2173 (2)0.37996 (12)0.0370 (4)
C20.5596 (4)0.1314 (2)0.34609 (13)0.0420 (4)
H2A0.66940.08870.38490.050*
C30.6132 (4)0.1082 (3)0.25559 (13)0.0458 (5)
H3A0.75790.04990.23340.055*
C40.4512 (4)0.1719 (3)0.19831 (13)0.0446 (5)
C50.2363 (4)0.2586 (3)0.23023 (13)0.0464 (5)
H5A0.12840.30170.19080.056*
C60.1820 (4)0.2812 (3)0.32122 (13)0.0436 (5)
H6A0.03680.33910.34310.052*
C70.0846 (3)0.2545 (3)0.52771 (13)0.0415 (4)
C80.1024 (3)0.2816 (2)0.62364 (12)0.0383 (4)
C90.3020 (3)0.3685 (3)0.64811 (13)0.0424 (4)
H9A0.43700.41030.60410.051*
C100.2992 (4)0.3926 (3)0.73789 (14)0.0457 (5)
H10A0.43180.45240.75340.055*
C110.1028 (4)0.3292 (3)0.80512 (13)0.0459 (5)
C120.0938 (4)0.2426 (3)0.77968 (13)0.0485 (5)
H12A0.22760.19900.82380.058*
C130.0946 (4)0.2201 (3)0.69069 (13)0.0444 (5)
H13A0.22950.16270.67530.053*
C140.0977 (6)0.3537 (4)0.90479 (15)0.0752 (8)
H14C0.06480.31990.93900.113*0.50
H14B0.13010.47380.90950.113*0.50
H14A0.22470.28290.92840.113*0.50
H14F0.25810.39790.91230.113*0.50
H14E0.06320.24390.94170.113*0.50
H14D0.03140.43480.92290.113*0.50
N10.3095 (3)0.2429 (2)0.47290 (11)0.0426 (4)
H10.432 (4)0.238 (3)0.5032 (14)0.051 (6)*
O10.1177 (2)0.2432 (2)0.50164 (10)0.0556 (4)
Cl10.51597 (14)0.14345 (10)0.08371 (4)0.0811 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0389 (9)0.0370 (9)0.0357 (9)0.0046 (7)0.0056 (7)0.0076 (7)
C20.0402 (10)0.0432 (10)0.0454 (10)0.0028 (8)0.0131 (8)0.0092 (8)
C30.0397 (10)0.0493 (11)0.0494 (11)0.0023 (8)0.0034 (8)0.0155 (9)
C40.0492 (11)0.0494 (11)0.0354 (9)0.0098 (9)0.0034 (8)0.0105 (8)
C50.0463 (11)0.0528 (12)0.0420 (10)0.0020 (9)0.0157 (8)0.0017 (9)
C60.0369 (10)0.0468 (11)0.0462 (10)0.0046 (8)0.0042 (8)0.0066 (8)
C70.0354 (9)0.0445 (11)0.0454 (10)0.0001 (8)0.0072 (8)0.0082 (8)
C80.0402 (10)0.0372 (9)0.0396 (10)0.0060 (7)0.0094 (8)0.0098 (7)
C90.0376 (10)0.0446 (11)0.0437 (10)0.0008 (8)0.0009 (8)0.0089 (8)
C100.0418 (10)0.0483 (11)0.0513 (11)0.0007 (8)0.0133 (8)0.0155 (9)
C110.0517 (12)0.0503 (11)0.0374 (10)0.0093 (9)0.0092 (8)0.0103 (8)
C120.0440 (11)0.0551 (12)0.0435 (11)0.0014 (9)0.0007 (8)0.0045 (9)
C130.0376 (10)0.0495 (11)0.0472 (11)0.0031 (8)0.0078 (8)0.0084 (9)
C140.106 (2)0.0861 (19)0.0402 (12)0.0043 (15)0.0246 (13)0.0180 (12)
N10.0349 (8)0.0531 (10)0.0422 (9)0.0023 (7)0.0099 (7)0.0108 (7)
O10.0313 (7)0.0923 (12)0.0473 (8)0.0016 (7)0.0107 (6)0.0191 (8)
Cl10.0963 (6)0.1062 (6)0.0407 (3)0.0049 (4)0.0022 (3)0.0211 (3)
Geometric parameters (Å, º) top
C1—C21.384 (3)C9—C101.384 (3)
C1—C61.392 (3)C9—H9A0.9300
C1—N11.418 (2)C10—C111.385 (3)
C2—C31.378 (3)C10—H10A0.9300
C2—H2A0.9300C11—C121.387 (3)
C3—C41.374 (3)C11—C141.531 (3)
C3—H3A0.9300C12—C131.372 (3)
C4—C51.378 (3)C12—H12A0.9300
C4—Cl11.7424 (19)C13—H13A0.9300
C5—C61.384 (3)C14—H14C0.9600
C5—H5A0.9300C14—H14B0.9600
C6—H6A0.9300C14—H14A0.9600
C7—O11.225 (2)C14—H14F0.9600
C7—N11.356 (2)C14—H14E0.9600
C7—C81.503 (2)C14—H14D0.9600
C8—C131.381 (3)N1—H10.859 (16)
C8—C91.394 (3)
C2—C1—C6119.12 (16)C12—C11—C14120.1 (2)
C2—C1—N1117.24 (16)C13—C12—C11121.24 (18)
C6—C1—N1123.55 (16)C13—C12—H12A119.4
C3—C2—C1120.82 (17)C11—C12—H12A119.4
C3—C2—H2A119.6C12—C13—C8120.88 (18)
C1—C2—H2A119.6C12—C13—H13A119.6
C4—C3—C2119.48 (18)C8—C13—H13A119.6
C4—C3—H3A120.3C11—C14—H14C109.5
C2—C3—H3A120.3C11—C14—H14B109.5
C3—C4—C5120.85 (17)H14C—C14—H14B109.5
C3—C4—Cl1120.06 (16)C11—C14—H14A109.5
C5—C4—Cl1119.10 (15)H14C—C14—H14A109.5
C4—C5—C6119.65 (17)H14B—C14—H14A109.5
C4—C5—H5A120.2C11—C14—H14F109.5
C6—C5—H5A120.2H14C—C14—H14F141.1
C5—C6—C1120.08 (17)H14B—C14—H14F56.3
C5—C6—H6A120.0H14A—C14—H14F56.3
C1—C6—H6A120.0C11—C14—H14E109.5
O1—C7—N1122.97 (18)H14C—C14—H14E56.3
O1—C7—C8122.33 (17)H14B—C14—H14E141.1
N1—C7—C8114.69 (16)H14A—C14—H14E56.3
C13—C8—C9118.61 (17)H14F—C14—H14E109.5
C13—C8—C7117.51 (16)C11—C14—H14D109.5
C9—C8—C7123.86 (17)H14C—C14—H14D56.3
C10—C9—C8120.03 (17)H14B—C14—H14D56.3
C10—C9—H9A120.0H14A—C14—H14D141.1
C8—C9—H9A120.0H14F—C14—H14D109.5
C9—C10—C11121.25 (17)H14E—C14—H14D109.5
C9—C10—H10A119.4C7—N1—C1125.82 (16)
C11—C10—H10A119.4C7—N1—H1111.3 (15)
C10—C11—C12117.98 (17)C1—N1—H1122.4 (15)
C10—C11—C14121.9 (2)
C6—C1—C2—C30.3 (3)C13—C8—C9—C100.4 (3)
N1—C1—C2—C3177.04 (17)C7—C8—C9—C10177.90 (17)
C1—C2—C3—C40.3 (3)C8—C9—C10—C111.1 (3)
C2—C3—C4—C50.1 (3)C9—C10—C11—C120.9 (3)
C2—C3—C4—Cl1179.91 (15)C9—C10—C11—C14179.6 (2)
C3—C4—C5—C60.3 (3)C10—C11—C12—C130.0 (3)
Cl1—C4—C5—C6179.64 (15)C14—C11—C12—C13179.5 (2)
C4—C5—C6—C10.3 (3)C11—C12—C13—C80.7 (3)
C2—C1—C6—C50.0 (3)C9—C8—C13—C120.5 (3)
N1—C1—C6—C5176.55 (17)C7—C8—C13—C12178.89 (17)
O1—C7—C8—C1327.7 (3)O1—C7—N1—C10.2 (3)
N1—C7—C8—C13151.95 (18)C8—C7—N1—C1179.91 (16)
O1—C7—C8—C9150.6 (2)C2—C1—N1—C7150.90 (19)
N1—C7—C8—C929.7 (3)C6—C1—N1—C732.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (2)2.42 (2)3.184 (2)148 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.3837 (3), 7.7382 (5), 15.0551 (8)
α, β, γ (°)83.146 (5), 80.436 (4), 89.527 (5)
V3)614.03 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerOxford Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.916, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
10437, 2506, 1947
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.152, 1.08
No. of reflections2506
No. of parameters159
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.859 (16)2.423 (18)3.184 (2)148 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

VV and JK thank the Slovak Grant Agencies for their financial support (VEGA Grant Agency of the Slovak Ministry of Education, grant No. 1/0679/11, and the Research and Development Agency of Slovakia, grant No. APVV-0202-10) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for award of an RFSMS research fellowship.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationJayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds