organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′-(4-Chloro­benzo­yl)-4′-(4-chloro­phen­yl)-1′-methyl­spiro­[indoline-3,2′-pyrrolidin]-2-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 24 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title compound, C25H20Cl2N2O2, the pyrrolidine ring adopts an envelope conformation and the best plane through the five ring atoms makes a dihedral angle of 87.03 (8)° with the indoline ring. Mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into centrosymmetric dimers with an R22(8) graph-set ring motif. C—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For substituted pyrrolidine compounds, see: Coldham & Hufton (2005[Coldham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765-2810.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20Cl2N2O2

  • Mr = 451.33

  • Monoclinic, P 21 /c

  • a = 11.4139 (2) Å

  • b = 11.6957 (2) Å

  • c = 16.5262 (2) Å

  • β = 102.037 (1)°

  • V = 2157.64 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 20528 measured reflections

  • 5426 independent reflections

  • 3812 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.03

  • 5426 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.85 (2) 2.06 (2) 2.876 (2) 160
C24—H24⋯O1ii 0.93 2.42 3.104 (2) 130
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted pyrrolidine compounds are an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products (Coldham & Hufton, 2005).

The indoline ring is essentially planar with a maximum deviation of 0.0594 (16)Å for atom C12. The oxygen atom O2 deviates with the value of 0.0566 (13)Å from the indoline ring. The phenyl ring of chlorophenyl group makes a dihedral angle of 79.68 (9)° and 20.47 (7)° with the pyrollidin ring and indoline ring system. The phenyl ring of chlorobenzaldehyde group makes a dihedral angle of 71.39 (9)° and 35.17 (8)° with the pyrrolidin ring and indoline ring system, respectively.

The pyrrolidin ring adopts an envelope conformation. The pyrrolidin ring makes a dihedral angle of 87.03 (8)° with the indoline ring system. The crystal structure is stabilized by C—H···O and N—H···O hydrogen bonds resulting in R22(16) and R22(8) graph-set ring motifs (Bernstein et al., 1995).

Related literature top

For substituted pyrrolidine compounds, see: Coldham & Hufton (2005). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

A solution of (E)-1,3-bis(4-chlorophenyl)prop-2-en-1-one(2 mmol), isatin (1 eq.) and sarcosine( 1 eq.) was refluxed in dry toluene for 8 hrs at 110°C using Dean-Stark apparatus.After the completion of reaction as indicated by TLC,toluene was evaporated under reduced pressure.The crude product was purified by column chromatography using hexane: EtOAc (8:2) as eluent.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93Å to 1.00Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down b axis, showing the hydrogen bonds resulting in R22(16) and R22(8) graph-set ring motifs; H-atoms not involved in H-bonds have been excluded for clarity.
3'-(4-Chlorobenzoyl)-4'-(4-chlorophenyl)-1'-methylspiro[indoline-3,2'- pyrrolidin]-2-one top
Crystal data top
C25H20Cl2N2O2F(000) = 936
Mr = 451.33Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5426 reflections
a = 11.4139 (2) Åθ = 1.8–28.4°
b = 11.6957 (2) ŵ = 0.33 mm1
c = 16.5262 (2) ÅT = 293 K
β = 102.037 (1)°Block, colourless
V = 2157.64 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3812 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.4°, θmin = 1.8°
ω and ϕ scansh = 1513
20528 measured reflectionsk = 1515
5426 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.5071P]
where P = (Fo2 + 2Fc2)/3
5426 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C25H20Cl2N2O2V = 2157.64 (6) Å3
Mr = 451.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4139 (2) ŵ = 0.33 mm1
b = 11.6957 (2) ÅT = 293 K
c = 16.5262 (2) Å0.20 × 0.20 × 0.20 mm
β = 102.037 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3812 reflections with I > 2σ(I)
20528 measured reflectionsRint = 0.026
5426 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
5426 reflectionsΔρmin = 0.44 e Å3
293 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14204 (5)0.56050 (5)0.16763 (3)0.06775 (17)
Cl20.85262 (5)0.60950 (6)0.62529 (4)0.0862 (2)
C90.11880 (14)0.73473 (15)0.50025 (9)0.0400 (4)
N20.48172 (13)0.92400 (12)0.60195 (9)0.0433 (3)
C150.37099 (14)0.80302 (13)0.66407 (8)0.0367 (3)
C70.31713 (14)0.62491 (14)0.54566 (9)0.0394 (3)
O20.34978 (11)0.96763 (11)0.48075 (8)0.0564 (3)
N10.17789 (11)0.88494 (12)0.59138 (8)0.0420 (3)
C80.25585 (13)0.73727 (14)0.51710 (9)0.0359 (3)
C120.29245 (13)0.83649 (13)0.58229 (8)0.0350 (3)
C200.05641 (13)0.69085 (15)0.41599 (9)0.0407 (4)
C230.06461 (15)0.61146 (16)0.26300 (10)0.0472 (4)
O10.25970 (12)0.54417 (11)0.56163 (9)0.0602 (3)
C40.45034 (14)0.61803 (13)0.55866 (9)0.0381 (3)
C130.37572 (14)0.91885 (14)0.54743 (9)0.0396 (3)
C140.48245 (14)0.85308 (14)0.67070 (9)0.0402 (3)
C100.08849 (14)0.85794 (16)0.51710 (10)0.0457 (4)
H10A0.09630.90760.47150.055*
H10B0.00790.86430.52700.055*
C50.51767 (14)0.68787 (15)0.51797 (9)0.0429 (4)
H50.47900.73760.47710.052*
C250.04115 (14)0.61909 (16)0.40920 (10)0.0459 (4)
H250.06640.59690.45680.055*
C10.69779 (16)0.61090 (17)0.59772 (11)0.0533 (4)
C240.10233 (15)0.57939 (16)0.33323 (10)0.0484 (4)
H240.16820.53150.32980.058*
C60.64165 (15)0.68453 (17)0.53744 (11)0.0506 (4)
H60.68620.73160.51000.061*
C220.03220 (16)0.68206 (19)0.26713 (10)0.0593 (5)
H220.05760.70290.21930.071*
C160.34817 (17)0.73153 (15)0.72517 (9)0.0465 (4)
H160.27260.69990.72180.056*
C20.63333 (18)0.53729 (17)0.63664 (11)0.0570 (5)
H20.67260.48540.67570.068*
C170.4410 (2)0.70793 (18)0.79193 (10)0.0600 (5)
H170.42780.65970.83390.072*
C30.50996 (17)0.54119 (15)0.61720 (10)0.0500 (4)
H30.46610.49180.64360.060*
C210.09178 (16)0.72204 (18)0.34360 (10)0.0563 (5)
H210.15690.77080.34650.068*
C190.57585 (17)0.82942 (18)0.73636 (10)0.0556 (5)
H190.65120.86190.74000.067*
C180.5529 (2)0.75563 (19)0.79644 (11)0.0658 (6)
H180.61430.73760.84110.079*
C110.18210 (18)1.00343 (17)0.61905 (12)0.0593 (5)
H11A0.19731.05240.57580.089*
H11B0.24501.01230.66720.089*
H11C0.10681.02360.63240.089*
H2A0.5428 (19)0.9548 (17)0.5892 (12)0.059 (6)*
H80.2804 (14)0.7597 (13)0.4670 (10)0.037 (4)*
H90.0928 (14)0.6848 (14)0.5430 (10)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0563 (3)0.0957 (4)0.0465 (2)0.0108 (3)0.0000 (2)0.0216 (2)
Cl20.0442 (3)0.1103 (5)0.0945 (4)0.0194 (3)0.0074 (3)0.0141 (4)
C90.0320 (8)0.0555 (10)0.0323 (7)0.0082 (7)0.0064 (6)0.0019 (7)
N20.0359 (7)0.0450 (8)0.0466 (7)0.0103 (6)0.0036 (6)0.0004 (6)
C150.0392 (8)0.0399 (8)0.0291 (6)0.0034 (7)0.0031 (6)0.0034 (6)
C70.0436 (9)0.0440 (9)0.0317 (7)0.0064 (7)0.0103 (6)0.0045 (6)
O20.0453 (7)0.0658 (8)0.0553 (7)0.0057 (6)0.0045 (6)0.0267 (6)
N10.0338 (7)0.0526 (8)0.0384 (7)0.0027 (6)0.0051 (5)0.0035 (6)
C80.0311 (7)0.0481 (9)0.0286 (6)0.0063 (6)0.0061 (6)0.0009 (6)
C120.0321 (8)0.0400 (8)0.0323 (7)0.0030 (6)0.0052 (6)0.0020 (6)
C200.0323 (8)0.0534 (9)0.0351 (7)0.0051 (7)0.0042 (6)0.0016 (7)
C230.0367 (9)0.0630 (11)0.0385 (8)0.0009 (8)0.0002 (7)0.0070 (8)
O10.0583 (8)0.0485 (7)0.0773 (9)0.0123 (6)0.0220 (7)0.0039 (6)
C40.0425 (9)0.0401 (8)0.0315 (7)0.0011 (7)0.0072 (6)0.0053 (6)
C130.0355 (8)0.0408 (8)0.0416 (8)0.0027 (7)0.0057 (6)0.0040 (6)
C140.0388 (8)0.0441 (9)0.0353 (7)0.0022 (7)0.0022 (6)0.0070 (6)
C100.0312 (8)0.0642 (11)0.0405 (8)0.0012 (7)0.0049 (6)0.0004 (7)
C50.0403 (9)0.0534 (10)0.0358 (7)0.0054 (7)0.0095 (6)0.0036 (7)
C250.0345 (8)0.0643 (11)0.0385 (8)0.0076 (8)0.0069 (6)0.0054 (7)
C10.0427 (10)0.0620 (12)0.0509 (9)0.0114 (9)0.0000 (8)0.0145 (9)
C240.0331 (8)0.0616 (11)0.0479 (9)0.0104 (8)0.0022 (7)0.0002 (8)
C60.0394 (9)0.0638 (11)0.0500 (9)0.0034 (8)0.0121 (7)0.0015 (8)
C220.0511 (11)0.0909 (15)0.0356 (8)0.0186 (10)0.0085 (7)0.0009 (9)
C160.0585 (11)0.0490 (9)0.0337 (7)0.0051 (8)0.0131 (7)0.0009 (7)
C20.0621 (12)0.0564 (11)0.0459 (9)0.0184 (9)0.0036 (8)0.0010 (8)
C170.0856 (15)0.0617 (12)0.0319 (8)0.0163 (11)0.0102 (9)0.0049 (8)
C30.0617 (12)0.0435 (10)0.0450 (9)0.0041 (8)0.0115 (8)0.0025 (7)
C210.0464 (10)0.0823 (14)0.0395 (8)0.0263 (9)0.0070 (7)0.0000 (9)
C190.0455 (10)0.0719 (13)0.0424 (9)0.0046 (9)0.0070 (7)0.0127 (9)
C180.0732 (14)0.0810 (15)0.0340 (8)0.0263 (12)0.0098 (9)0.0059 (9)
C110.0514 (11)0.0609 (12)0.0614 (11)0.0097 (9)0.0019 (9)0.0120 (9)
Geometric parameters (Å, º) top
Cl1—C231.7433 (16)C14—C191.381 (2)
Cl2—C11.7306 (19)C10—H10A0.9700
C9—C201.515 (2)C10—H10B0.9700
C9—C101.521 (2)C5—C61.385 (2)
C9—C81.531 (2)C5—H50.9300
C9—H91.007 (16)C25—C241.383 (2)
N2—C131.351 (2)C25—H250.9300
N2—C141.405 (2)C1—C61.371 (3)
N2—H2A0.85 (2)C1—C21.376 (3)
C15—C161.377 (2)C24—H240.9300
C15—C141.384 (2)C6—H60.9300
C15—C121.5093 (19)C22—C211.386 (2)
C7—O11.2096 (19)C22—H220.9300
C7—C41.493 (2)C16—C171.389 (3)
C7—C81.517 (2)C16—H160.9300
O2—C131.2213 (19)C2—C31.378 (3)
N1—C111.457 (2)C2—H20.9300
N1—C101.458 (2)C17—C181.381 (3)
N1—C121.4612 (19)C17—H170.9300
C8—C121.579 (2)C3—H30.9300
C8—H80.964 (15)C21—H210.9300
C12—C131.546 (2)C19—C181.381 (3)
C20—C251.380 (2)C19—H190.9300
C20—C211.389 (2)C18—H180.9300
C23—C221.370 (2)C11—H11A0.9600
C23—C241.372 (2)C11—H11B0.9600
C4—C51.388 (2)C11—H11C0.9600
C4—C31.390 (2)
C20—C9—C10114.07 (14)N1—C10—H10B111.3
C20—C9—C8116.12 (12)C9—C10—H10B111.3
C10—C9—C8102.19 (13)H10A—C10—H10B109.2
C20—C9—H9107.3 (9)C6—C5—C4120.88 (15)
C10—C9—H9108.0 (9)C6—C5—H5119.6
C8—C9—H9108.8 (9)C4—C5—H5119.6
C13—N2—C14111.50 (14)C20—C25—C24121.60 (15)
C13—N2—H2A121.4 (13)C20—C25—H25119.2
C14—N2—H2A125.7 (14)C24—C25—H25119.2
C16—C15—C14120.67 (14)C6—C1—C2121.22 (17)
C16—C15—C12130.26 (15)C6—C1—Cl2119.63 (16)
C14—C15—C12109.01 (13)C2—C1—Cl2119.16 (15)
O1—C7—C4120.57 (15)C23—C24—C25119.21 (15)
O1—C7—C8120.56 (15)C23—C24—H24120.4
C4—C7—C8118.76 (13)C25—C24—H24120.4
C11—N1—C10116.21 (14)C1—C6—C5119.13 (17)
C11—N1—C12115.43 (13)C1—C6—H6120.4
C10—N1—C12108.29 (12)C5—C6—H6120.4
C7—C8—C9115.29 (13)C23—C22—C21119.11 (16)
C7—C8—C12112.65 (12)C23—C22—H22120.4
C9—C8—C12104.67 (12)C21—C22—H22120.4
C7—C8—H8107.7 (9)C15—C16—C17118.25 (18)
C9—C8—H8108.6 (9)C15—C16—H16120.9
C12—C8—H8107.7 (9)C17—C16—H16120.9
N1—C12—C15112.69 (12)C1—C2—C3119.36 (17)
N1—C12—C13115.44 (13)C1—C2—H2120.3
C15—C12—C13101.46 (12)C3—C2—H2120.3
N1—C12—C8103.88 (11)C18—C17—C16120.42 (18)
C15—C12—C8116.32 (13)C18—C17—H17119.8
C13—C12—C8107.41 (11)C16—C17—H17119.8
C25—C20—C21117.66 (14)C2—C3—C4120.78 (17)
C25—C20—C9119.82 (13)C2—C3—H3119.6
C21—C20—C9122.51 (14)C4—C3—H3119.6
C22—C23—C24120.99 (15)C22—C21—C20121.43 (16)
C22—C23—Cl1120.19 (13)C22—C21—H21119.3
C24—C23—Cl1118.82 (13)C20—C21—H21119.3
C5—C4—C3118.53 (15)C18—C19—C14117.30 (18)
C5—C4—C7123.30 (14)C18—C19—H19121.3
C3—C4—C7118.11 (15)C14—C19—H19121.3
O2—C13—N2126.58 (15)C17—C18—C19121.72 (17)
O2—C13—C12125.09 (14)C17—C18—H18119.1
N2—C13—C12108.29 (13)C19—C18—H18119.1
C19—C14—C15121.57 (16)N1—C11—H11A109.5
C19—C14—N2128.82 (16)N1—C11—H11B109.5
C15—C14—N2109.59 (13)H11A—C11—H11B109.5
N1—C10—C9102.32 (13)N1—C11—H11C109.5
N1—C10—H10A111.3H11A—C11—H11C109.5
C9—C10—H10A111.3H11B—C11—H11C109.5
O1—C7—C8—C97.3 (2)C15—C12—C13—N21.53 (16)
C4—C7—C8—C9176.42 (12)C8—C12—C13—N2121.00 (14)
O1—C7—C8—C12112.75 (16)C16—C15—C14—C193.0 (2)
C4—C7—C8—C1263.54 (16)C12—C15—C14—C19174.50 (15)
C20—C9—C8—C783.09 (17)C16—C15—C14—N2178.46 (14)
C10—C9—C8—C7152.12 (12)C12—C15—C14—N24.06 (17)
C20—C9—C8—C12152.59 (13)C13—N2—C14—C19175.32 (17)
C10—C9—C8—C1227.79 (14)C13—N2—C14—C153.10 (19)
C11—N1—C12—C1577.91 (17)C11—N1—C10—C9173.24 (14)
C10—N1—C12—C15149.85 (13)C12—N1—C10—C941.42 (15)
C11—N1—C12—C1338.02 (18)C20—C9—C10—N1167.97 (12)
C10—N1—C12—C1394.22 (15)C8—C9—C10—N141.82 (14)
C11—N1—C12—C8155.33 (13)C3—C4—C5—C62.5 (2)
C10—N1—C12—C823.09 (15)C7—C4—C5—C6174.50 (15)
C16—C15—C12—N155.4 (2)C21—C20—C25—C240.2 (3)
C14—C15—C12—N1127.39 (14)C9—C20—C25—C24178.42 (16)
C16—C15—C12—C13179.49 (16)C22—C23—C24—C250.1 (3)
C14—C15—C12—C133.36 (16)Cl1—C23—C24—C25179.77 (14)
C16—C15—C12—C864.4 (2)C20—C25—C24—C230.5 (3)
C14—C15—C12—C8112.81 (14)C2—C1—C6—C52.7 (3)
C7—C8—C12—N1130.00 (12)Cl2—C1—C6—C5177.68 (13)
C9—C8—C12—N14.01 (14)C4—C5—C6—C10.1 (3)
C7—C8—C12—C155.56 (17)C24—C23—C22—C210.5 (3)
C9—C8—C12—C15120.43 (14)Cl1—C23—C22—C21179.58 (17)
C7—C8—C12—C13107.23 (14)C14—C15—C16—C172.3 (2)
C9—C8—C12—C13126.78 (12)C12—C15—C16—C17174.61 (16)
C10—C9—C20—C25102.97 (18)C6—C1—C2—C32.9 (3)
C8—C9—C20—C25138.57 (16)Cl2—C1—C2—C3177.48 (14)
C10—C9—C20—C2175.5 (2)C15—C16—C17—C180.2 (3)
C8—C9—C20—C2142.9 (2)C1—C2—C3—C40.3 (3)
O1—C7—C4—C5157.76 (16)C5—C4—C3—C22.3 (2)
C8—C7—C4—C525.9 (2)C7—C4—C3—C2174.86 (15)
O1—C7—C4—C325.2 (2)C23—C22—C21—C200.9 (3)
C8—C7—C4—C3151.11 (14)C25—C20—C21—C220.5 (3)
C14—N2—C13—O2177.25 (17)C9—C20—C21—C22179.06 (19)
C14—N2—C13—C120.80 (18)C15—C14—C19—C181.5 (3)
N1—C12—C13—O258.2 (2)N2—C14—C19—C18179.75 (17)
C15—C12—C13—O2179.62 (16)C16—C17—C18—C191.3 (3)
C8—C12—C13—O257.1 (2)C14—C19—C18—C170.6 (3)
N1—C12—C13—N2123.69 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.85 (2)2.06 (2)2.876 (2)160
C24—H24···O1ii0.932.423.104 (2)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H20Cl2N2O2
Mr451.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.4139 (2), 11.6957 (2), 16.5262 (2)
β (°) 102.037 (1)
V3)2157.64 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20528, 5426, 3812
Rint0.026
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.03
No. of reflections5426
No. of parameters293
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.44

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.85 (2)2.06 (2)2.876 (2)160
C24—H24···O1ii0.932.423.104 (2)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

TS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS also thanks the DST for an Inspire fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColdham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765–2810.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds