metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1484-m1485

Bis[N′-(9H-fluoren-9-yl­­idene)benzohydrazidato-κ2N′,O]copper(II)

aNuclear Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: guoyanling@lzu.edu.cn

(Received 27 July 2011; accepted 22 September 2011; online 5 October 2011)

In the title complex, [Cu(C20H13N2O)2], the CuII ion is tetra-coordinated by an N2O2 set of two ligands in a distorted recta­ngular-planar geometry. The dihedral angle between the two coordinated five-membered metalla rings is 37.5 (3)°. The mol­ecular configuration is stabilized by two C—H⋯O and two C—H⋯N intra­molecular hydrogen bonds. The crystal packing is dominated by van der Waals inter­actions. Three atoms of the phenyl ring of the benzohydrazidate moiety are disordered over two sets of sites in a 0.625 (18):0.375 (18) ratio.

Related literature

For general backgound to the biological and pharmacological activity of aroylhydrazones, see Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]); Zhong et al. (2007[Zhong, X., Wei, H. L., Liu, W. S., Wang, D. Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Wang et al. (2009[Wang, Q., Yang, Z. Y., Qi, G. F. & Qin, D. D. (2009). Eur. J. Med. Chem. 44, 2425-2433.]); Li et al. (2010[Li, H. G., Yang, Z. Y., Wang, B. D. & Wu, J. C. (2010). J. Organomet. Chem. 695, 415-422.]). For Schiff base coordination modes, see: El-Sherif (2009[El-Sherif, A. A. (2009). Inorg. Chim. Acta, 362, 4991-5000.]); Yang et al. (2006[Yang, Z. Y., Wang, B. D. & Li, Y. H. (2006). J. Organomet. Chem. 691, 4159-4166.]); Carcelli et al. (1995[Carcelli, M., Pelizzi, C., Pelizzi, G., Mazza, P. & Zani, F. (1995). J. Organomet. Chem. 488, 55-61.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C20H13N2O)2]

  • Mr = 658.19

  • Monoclinic, P 21 /c

  • a = 14.437 (2) Å

  • b = 25.882 (3) Å

  • c = 8.1047 (2) Å

  • β = 98.205 (3)°

  • V = 2997.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.29 × 0.14 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.807, Tmax = 0.955

  • 15492 measured reflections

  • 5331 independent reflections

  • 2230 reflections with I > 2σ(I)

  • Rint = 0.131

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.227

  • S = 1.02

  • 5331 reflections

  • 452 parameters

  • 127 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.881 (5)
Cu1—O1 1.890 (5)
Cu1—N3 1.986 (6)
Cu1—N2 1.999 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1 0.93 2.37 2.888 (10) 115
C11—H11⋯O2 0.93 2.40 2.918 (10) 115
C23—H23⋯O1 0.93 2.39 3.007 (10) 124
C31—H31⋯N4 0.93 2.38 2.898 (9) 115

Data collection: SMART (Bruker, 1997)[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 1997)[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Aroylhydrazones have attracted much attention for many years because of their biological and pharmacological activities (Ranford et al., 1998; Zhong et al., 2007; Wang et al., 2009; Li et al., 2010), and their easy coordination with transition , lanthanide , and main group metals with versatile coordination modes also prompts the interests of inorganic chemists (El-Sherif, 2009; Yang et al., 2006; Carcelli et al., 1995). Our research group is interested in bidentate aroylhydrazone Schiff bases derived from 9H-fluoren-9-one. We report here the crystal structure of the title complex (I). The crystal structure of complex (I) is illustrated in Figure 1. Selected bond lengths are given in Table 1. The structure of CuII complex shows that the central Cu(II) ion is surrounded by two nitrogen atoms (N2 and N3) with Cu—N distances of 1.999 (6)Å and 1.986 (6) Å, and two oxygen atoms (O1 and O2) with Cu—O distances of 1.890 (5)Å and 1.881 (5) Å, forming a distorted rectangle-planar geometry. The ligands in complex (I) are in the enol form. The molecular structure is stabilized by three C—H···O and three C—H···N intramolecular hydrogen bonds, Table 2. The crystal packing is stabilized by van der Waals interactions.

Related literature top

For general backgound to the biological and pharmacological activity of aroylhydrazones, see Ranford et al. (1998); Zhong et al. (2007); Wang et al. (2009); Li et al. (2010). For Schiff base coordination modes, see: El-Sherif (2009); Yang et al. (2006); Carcelli et al. (1995).

Experimental top

A solution containing hydrated Cu(OAc)2 (0.15 mmol) and the ligand N'-(9H-fluoren-9-ylidene)benzohydrazide (0.30 mmol) in 15 cm of EtOH/DMF (2:1, v:v) was refluxed for 6 h. The precipitates thus produced were collected, washed several times with warm ethanol and dried in vacuo. Dark green single crystals suitable for X-ray diffraction analyses were obtained by slow evaporation of a solution of complex(I) in DMSO. Atoms C38,C39 & C40 are disordered and were modelled using a split model with refinend population parameters of 0.625(18 )/0.375 (18)

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). Atoms C38, C39 & C40 are disordered and were modelled using a split model with refined population parameters of 0.625 (18)/0.375 (18).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen bonds are showed as dashed line.
Bis[N'-(9H-fluoren-9-ylidene)benzohydrazidato-κ2N',O]copper(II) top
Crystal data top
[Cu(C20H13N2O)2]F(000) = 1356
Mr = 658.19Dx = 1.459 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1436 reflections
a = 14.437 (2) Åθ = 2.8–18.4°
b = 25.882 (3) ŵ = 0.77 mm1
c = 8.1047 (2) ÅT = 293 K
β = 98.205 (3)°Block, green
V = 2997.4 (6) Å30.29 × 0.14 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5331 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.131
phi and ω scansθmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.807, Tmax = 0.955k = 3025
15492 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0807P)2 + 2.1941P]
where P = (Fo2 + 2Fc2)/3
5331 reflections(Δ/σ)max < 0.001
452 parametersΔρmax = 0.59 e Å3
127 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cu(C20H13N2O)2]V = 2997.4 (6) Å3
Mr = 658.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.437 (2) ŵ = 0.77 mm1
b = 25.882 (3) ÅT = 293 K
c = 8.1047 (2) Å0.29 × 0.14 × 0.06 mm
β = 98.205 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5331 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2230 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.955Rint = 0.131
15492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070127 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.02Δρmax = 0.59 e Å3
5331 reflectionsΔρmin = 0.70 e Å3
452 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C40B0.0047 (13)0.3112 (6)1.038 (4)0.063 (6)0.375 (18)
H40B0.05860.30301.05590.075*0.375 (18)
Cu10.20775 (6)0.43559 (4)0.93743 (12)0.0450 (4)
C10.4472 (6)0.2777 (3)1.0219 (10)0.046 (2)
C20.4509 (5)0.3302 (3)1.0635 (10)0.042 (2)
C30.5272 (5)0.3499 (3)1.1633 (11)0.051 (2)
H30.53000.38471.19210.062*
C40.5998 (6)0.3168 (4)1.2201 (12)0.065 (3)
H40.65190.32971.28840.078*
C50.5971 (6)0.2657 (4)1.1787 (13)0.073 (3)
H50.64700.24421.21850.087*
C60.5202 (6)0.2459 (3)1.0774 (12)0.059 (2)
H60.51820.21121.04760.070*
C70.3594 (6)0.2663 (3)0.9136 (10)0.046 (2)
C80.3236 (6)0.2209 (3)0.8465 (11)0.054 (2)
H80.35620.19020.87000.064*
C90.2387 (7)0.2209 (3)0.7436 (11)0.058 (2)
H90.21290.19010.69980.070*
C100.1914 (6)0.2678 (3)0.7055 (11)0.059 (2)
H100.13550.26810.63240.071*
C110.2272 (6)0.3133 (3)0.7757 (10)0.051 (2)
H110.19570.34430.75030.062*
C120.3096 (5)0.3127 (3)0.8833 (10)0.045 (2)
C130.3615 (5)0.3537 (3)0.9830 (9)0.0403 (19)
C140.3626 (5)0.4804 (3)1.0841 (9)0.0383 (19)
C150.4194 (5)0.5219 (3)1.1753 (10)0.045 (2)
C160.3900 (6)0.5718 (3)1.1627 (12)0.063 (3)
H160.33380.58001.09680.076*
C170.4435 (7)0.6108 (4)1.2478 (14)0.079 (3)
H170.42290.64481.23830.095*
C180.5245 (7)0.5994 (4)1.3434 (13)0.074 (3)
H180.55970.62571.40050.089*
C190.5556 (6)0.5496 (4)1.3573 (14)0.085 (3)
H190.61110.54161.42580.102*
C200.5039 (6)0.5109 (3)1.2684 (13)0.071 (3)
H200.52680.47731.27210.086*
C210.0866 (5)0.5813 (3)0.5806 (9)0.041 (2)
C220.1356 (5)0.5405 (3)0.6667 (9)0.0388 (19)
C230.2302 (6)0.5343 (3)0.6566 (10)0.051 (2)
H230.26370.50740.71270.061*
C240.2735 (6)0.5684 (4)0.5627 (11)0.063 (2)
H240.33710.56450.55770.076*
C250.2258 (6)0.6081 (4)0.4760 (11)0.064 (3)
H250.25630.63010.41090.076*
C260.1300 (6)0.6151 (3)0.4868 (11)0.057 (2)
H260.09690.64230.43110.069*
C270.0120 (6)0.5776 (3)0.6001 (10)0.044 (2)
C280.0856 (6)0.6088 (3)0.5426 (11)0.058 (2)
H280.07610.63860.48280.070*
C290.1738 (6)0.5961 (4)0.5736 (11)0.064 (3)
H290.22410.61740.53520.077*
C300.1880 (6)0.5519 (3)0.6611 (11)0.060 (3)
H300.24840.54330.67850.071*
C310.1143 (5)0.5200 (3)0.7240 (10)0.047 (2)
H310.12410.49070.78590.056*
C320.0264 (5)0.5330 (3)0.6920 (9)0.0391 (19)
C330.0677 (5)0.5100 (3)0.7419 (9)0.0358 (18)
C340.0387 (5)0.3958 (3)0.9363 (10)0.043 (2)
C350.0326 (5)0.3590 (3)0.9726 (10)0.050 (2)
C360.1235 (5)0.3734 (3)0.9799 (11)0.066 (3)
H360.14120.40770.96250.080*
C370.1880 (6)0.3375 (3)1.0124 (12)0.093 (4)
H37A0.23810.34661.03830.112*0.50
H37B0.24810.34560.99430.112*0.50
C38A0.1667 (8)0.2850 (4)1.003 (2)0.066 (4)0.625 (18)
H38A0.21120.26031.02060.079*0.625 (18)
C39A0.0803 (9)0.2695 (4)0.967 (2)0.070 (4)0.625 (18)
H39A0.06770.23460.95300.084*0.625 (18)
C40A0.0125 (9)0.3066 (4)0.953 (2)0.063 (4)0.625 (18)
H40A0.04630.29670.93000.076*0.625 (18)
C38B0.1612 (13)0.2901 (6)1.082 (4)0.074 (6)0.375 (18)
H38B0.20280.26901.12860.089*0.375 (18)
C39B0.0692 (12)0.2756 (6)1.078 (4)0.069 (5)0.375 (18)
H39B0.05070.24171.10320.082*0.375 (18)
N10.3951 (4)0.4335 (2)1.0919 (8)0.0445 (16)
N20.3319 (4)0.4013 (2)0.9993 (8)0.0412 (16)
N30.0894 (4)0.4678 (2)0.8305 (8)0.0377 (15)
N40.0121 (4)0.4397 (2)0.8676 (7)0.0402 (15)
O10.2795 (3)0.49479 (18)1.0070 (7)0.0481 (15)
O20.1258 (3)0.38160 (19)0.9738 (7)0.0505 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40B0.061 (8)0.056 (8)0.070 (9)0.002 (7)0.003 (7)0.013 (7)
Cu10.0386 (6)0.0385 (6)0.0539 (7)0.0002 (5)0.0067 (5)0.0015 (5)
C10.046 (5)0.046 (5)0.045 (5)0.005 (4)0.004 (4)0.004 (4)
C20.041 (5)0.044 (5)0.043 (5)0.006 (4)0.011 (4)0.004 (4)
C30.038 (5)0.041 (5)0.071 (7)0.002 (4)0.006 (5)0.003 (4)
C40.047 (6)0.066 (7)0.080 (7)0.001 (5)0.003 (5)0.005 (5)
C50.045 (6)0.065 (7)0.105 (9)0.015 (5)0.000 (6)0.020 (6)
C60.054 (6)0.042 (5)0.081 (7)0.012 (5)0.013 (5)0.004 (5)
C70.054 (5)0.039 (5)0.046 (5)0.001 (4)0.010 (4)0.001 (4)
C80.059 (6)0.044 (5)0.061 (6)0.002 (4)0.018 (5)0.001 (4)
C90.077 (7)0.045 (5)0.053 (6)0.005 (5)0.007 (5)0.009 (4)
C100.058 (6)0.060 (6)0.059 (6)0.005 (5)0.005 (5)0.008 (5)
C110.060 (6)0.048 (5)0.043 (5)0.003 (4)0.003 (5)0.006 (4)
C120.046 (5)0.046 (5)0.040 (5)0.003 (4)0.002 (4)0.003 (4)
C130.039 (5)0.042 (5)0.040 (5)0.009 (4)0.004 (4)0.004 (4)
C140.039 (5)0.038 (5)0.039 (5)0.002 (4)0.011 (4)0.002 (4)
C150.043 (5)0.041 (5)0.052 (6)0.011 (4)0.013 (4)0.008 (4)
C160.055 (6)0.043 (6)0.085 (7)0.002 (4)0.018 (5)0.007 (5)
C170.072 (7)0.048 (6)0.113 (9)0.015 (5)0.004 (7)0.020 (6)
C180.061 (7)0.069 (7)0.092 (8)0.017 (6)0.007 (6)0.034 (6)
C190.044 (6)0.079 (8)0.118 (10)0.001 (5)0.033 (6)0.029 (6)
C200.054 (6)0.053 (6)0.098 (8)0.011 (5)0.020 (6)0.026 (5)
C210.045 (5)0.039 (5)0.038 (5)0.005 (4)0.002 (4)0.003 (4)
C220.039 (5)0.037 (4)0.037 (5)0.000 (4)0.003 (4)0.000 (4)
C230.047 (5)0.055 (6)0.049 (6)0.002 (4)0.003 (4)0.002 (4)
C240.047 (6)0.087 (7)0.054 (6)0.009 (5)0.001 (5)0.008 (5)
C250.051 (6)0.074 (7)0.065 (7)0.016 (5)0.003 (5)0.009 (5)
C260.053 (6)0.054 (6)0.060 (6)0.008 (5)0.007 (5)0.011 (5)
C270.057 (6)0.034 (5)0.038 (5)0.007 (4)0.003 (4)0.000 (4)
C280.066 (6)0.052 (6)0.055 (6)0.012 (5)0.002 (5)0.006 (4)
C290.056 (6)0.082 (7)0.054 (6)0.031 (5)0.001 (5)0.018 (5)
C300.053 (6)0.070 (7)0.052 (6)0.024 (5)0.004 (5)0.002 (5)
C310.044 (5)0.053 (5)0.044 (5)0.005 (4)0.013 (4)0.002 (4)
C320.038 (5)0.044 (5)0.032 (5)0.008 (4)0.008 (4)0.003 (4)
C330.037 (5)0.035 (4)0.033 (5)0.009 (4)0.001 (4)0.002 (3)
C340.038 (5)0.043 (5)0.046 (5)0.001 (4)0.003 (4)0.001 (4)
C350.039 (5)0.042 (5)0.064 (6)0.004 (4)0.010 (4)0.013 (4)
C360.044 (6)0.064 (6)0.094 (8)0.001 (5)0.018 (5)0.029 (5)
C370.061 (7)0.096 (9)0.126 (11)0.003 (6)0.021 (7)0.043 (7)
C38A0.054 (6)0.070 (7)0.073 (8)0.014 (6)0.011 (6)0.021 (6)
C39A0.071 (6)0.064 (6)0.071 (7)0.001 (5)0.001 (6)0.013 (6)
C40A0.060 (7)0.057 (7)0.067 (8)0.003 (6)0.009 (6)0.021 (6)
C38B0.067 (8)0.076 (8)0.080 (9)0.011 (7)0.013 (7)0.012 (7)
C39B0.064 (7)0.063 (7)0.076 (8)0.004 (6)0.001 (7)0.020 (7)
N10.037 (4)0.040 (4)0.053 (4)0.003 (3)0.004 (3)0.007 (3)
N20.045 (4)0.033 (4)0.045 (4)0.008 (3)0.003 (3)0.001 (3)
N30.030 (4)0.041 (4)0.042 (4)0.004 (3)0.003 (3)0.005 (3)
N40.034 (4)0.044 (4)0.040 (4)0.000 (3)0.002 (3)0.003 (3)
O10.039 (3)0.037 (3)0.064 (4)0.006 (2)0.008 (3)0.001 (3)
O20.032 (3)0.045 (3)0.070 (4)0.003 (3)0.008 (3)0.013 (3)
Geometric parameters (Å, º) top
C40B—C351.383 (10)C21—C261.368 (10)
C40B—C39B1.383 (9)C21—C221.400 (10)
C40B—H40B0.9300C21—C271.457 (10)
Cu1—O21.881 (5)C22—C231.388 (10)
Cu1—O11.890 (5)C22—C331.460 (10)
Cu1—N31.986 (6)C23—C241.372 (11)
Cu1—N21.999 (6)C23—H230.9300
C1—C61.362 (10)C24—C251.374 (11)
C1—C21.399 (10)C24—H240.9300
C1—C71.466 (11)C25—C261.409 (11)
C2—C31.367 (10)C25—H250.9300
C2—C131.491 (10)C26—H260.9300
C3—C41.381 (11)C27—C281.364 (10)
C3—H30.9300C27—C321.405 (10)
C4—C51.364 (11)C28—C291.372 (11)
C4—H40.9300C28—H280.9300
C5—C61.382 (12)C29—C301.375 (11)
C5—H50.9300C29—H290.9300
C6—H60.9300C30—C311.387 (10)
C7—C81.365 (10)C30—H300.9300
C7—C121.403 (10)C31—C321.373 (10)
C8—C91.381 (11)C31—H310.9300
C8—H80.9300C32—C331.486 (9)
C9—C101.405 (11)C33—N31.318 (8)
C9—H90.9300C34—N41.299 (9)
C10—C111.377 (10)C34—O21.303 (8)
C10—H100.9300C34—C351.464 (9)
C11—C121.371 (10)C35—C361.374 (7)
C11—H110.9300C35—C40A1.400 (9)
C12—C131.471 (10)C36—C371.367 (7)
C13—N21.316 (8)C36—H360.9300
C14—N11.300 (8)C37—C38B1.383 (9)
C14—O11.325 (8)C37—C38A1.398 (8)
C14—C151.481 (10)C37—H37A0.8168
C15—C161.360 (10)C37—H37B0.8852
C15—C201.370 (11)C38A—C39A1.380 (9)
C16—C171.390 (11)C38A—H38A0.9300
C16—H160.9300C39A—C40A1.389 (9)
C17—C181.341 (12)C39A—H39A0.9300
C17—H170.9300C40A—H40A0.9300
C18—C191.365 (12)C38B—C39B1.384 (9)
C18—H180.9300C38B—H38B0.9300
C19—C201.387 (11)C39B—H39B0.9300
C19—H190.9300N1—N21.378 (8)
C20—H200.9300N3—N41.400 (8)
C35—C40B—C39B121.3 (12)C23—C24—C25121.9 (8)
C35—C40B—H40B119.4C23—C24—H24119.0
C39B—C40B—H40B119.4C25—C24—H24119.0
O2—Cu1—O1152.3 (2)C24—C25—C26119.3 (8)
O2—Cu1—N381.9 (2)C24—C25—H25120.3
O1—Cu1—N3101.0 (2)C26—C25—H25120.3
O2—Cu1—N2101.1 (2)C21—C26—C25118.9 (8)
O1—Cu1—N281.5 (2)C21—C26—H26120.5
N3—Cu1—N2168.8 (2)C25—C26—H26120.5
C6—C1—C2120.4 (8)C28—C27—C32120.1 (8)
C6—C1—C7129.7 (8)C28—C27—C21130.4 (8)
C2—C1—C7109.8 (7)C32—C27—C21109.5 (7)
C3—C2—C1120.3 (7)C27—C28—C29119.5 (8)
C3—C2—C13132.9 (7)C27—C28—H28120.2
C1—C2—C13106.8 (7)C29—C28—H28120.2
C2—C3—C4118.4 (8)C28—C29—C30120.3 (8)
C2—C3—H3120.8C28—C29—H29119.8
C4—C3—H3120.8C30—C29—H29119.8
C5—C4—C3121.7 (9)C29—C30—C31121.4 (8)
C5—C4—H4119.2C29—C30—H30119.3
C3—C4—H4119.2C31—C30—H30119.3
C4—C5—C6119.9 (8)C32—C31—C30117.8 (8)
C4—C5—H5120.0C32—C31—H31121.1
C6—C5—H5120.0C30—C31—H31121.1
C1—C6—C5119.3 (8)C31—C32—C27120.9 (7)
C1—C6—H6120.3C31—C32—C33133.1 (7)
C5—C6—H6120.3C27—C32—C33105.9 (7)
C8—C7—C12120.8 (8)N3—C33—C22123.7 (7)
C8—C7—C1131.1 (8)N3—C33—C32128.1 (7)
C12—C7—C1108.1 (7)C22—C33—C32108.1 (6)
C7—C8—C9119.5 (8)N4—C34—O2124.3 (7)
C7—C8—H8120.2N4—C34—C35118.8 (7)
C9—C8—H8120.2O2—C34—C35116.8 (7)
C8—C9—C10119.7 (8)C36—C35—C40B116.9 (10)
C8—C9—H9120.2C36—C35—C40A118.8 (8)
C10—C9—H9120.2C40B—C35—C40A29.0 (12)
C11—C10—C9120.4 (9)C36—C35—C34122.4 (7)
C11—C10—H10119.8C40B—C35—C34119.1 (10)
C9—C10—H10119.8C40A—C35—C34116.4 (8)
C12—C11—C10119.6 (8)C37—C36—C35120.3 (7)
C12—C11—H11120.2C37—C36—H36119.8
C10—C11—H11120.2C35—C36—H36119.8
C11—C12—C7119.8 (7)C36—C37—C38B121.6 (9)
C11—C12—C13132.0 (7)C36—C37—C38A119.3 (8)
C7—C12—C13108.2 (7)C38B—C37—C38A27.0 (13)
N2—C13—C12125.6 (7)C36—C37—H37A120.5
N2—C13—C2127.6 (7)C38B—C37—H37A110.9
C12—C13—C2106.8 (7)C38A—C37—H37A120.2
N1—C14—O1125.6 (7)C36—C37—H37B119.1
N1—C14—C15118.8 (7)C38B—C37—H37B119.2
O1—C14—C15115.5 (7)C38A—C37—H37B116.0
C16—C15—C20118.7 (7)H37A—C37—H37B24.4
C16—C15—C14120.5 (8)C39A—C38A—C37120.4 (9)
C20—C15—C14120.7 (7)C39A—C38A—H38A119.8
C15—C16—C17120.5 (9)C37—C38A—H38A119.8
C15—C16—H16119.8C38A—C39A—C40A119.0 (10)
C17—C16—H16119.8C38A—C39A—H39A120.5
C18—C17—C16120.3 (9)C40A—C39A—H39A120.5
C18—C17—H17119.8C39A—C40A—C35120.1 (10)
C16—C17—H17119.8C39A—C40A—H40A120.0
C17—C18—C19120.2 (9)C35—C40A—H40A120.0
C17—C18—H18119.9C37—C38B—C39B116.5 (11)
C19—C18—H18119.9C37—C38B—H38B121.8
C18—C19—C20119.5 (9)C39B—C38B—H38B121.8
C18—C19—H19120.2C40B—C39B—C38B120.3 (12)
C20—C19—H19120.2C40B—C39B—H39B119.9
C15—C20—C19120.6 (8)C38B—C39B—H39B119.9
C15—C20—H20119.7C14—N1—N2109.4 (6)
C19—C20—H20119.7C13—N2—N1115.0 (6)
C26—C21—C22121.3 (8)C13—N2—Cu1133.1 (5)
C26—C21—C27129.4 (7)N1—N2—Cu1111.6 (4)
C22—C21—C27109.1 (7)C33—N3—N4114.4 (6)
C23—C22—C21119.3 (7)C33—N3—Cu1135.0 (5)
C23—C22—C33133.4 (7)N4—N3—Cu1110.5 (4)
C21—C22—C33107.2 (7)C34—N4—N3110.5 (6)
C24—C23—C22119.3 (8)C14—O1—Cu1109.5 (4)
C24—C23—H23120.4C34—O2—Cu1111.1 (5)
C22—C23—H23120.4
C6—C1—C2—C31.3 (12)C23—C22—C33—N34.2 (14)
C7—C1—C2—C3179.6 (7)C21—C22—C33—N3178.9 (7)
C6—C1—C2—C13179.7 (7)C23—C22—C33—C32172.5 (8)
C7—C1—C2—C131.4 (9)C21—C22—C33—C322.2 (8)
C1—C2—C3—C40.4 (12)C31—C32—C33—N32.4 (14)
C13—C2—C3—C4179.2 (8)C27—C32—C33—N3179.6 (7)
C2—C3—C4—C50.2 (14)C31—C32—C33—C22179.0 (8)
C3—C4—C5—C60.0 (15)C27—C32—C33—C223.8 (8)
C2—C1—C6—C51.5 (13)C39B—C40B—C35—C3613 (3)
C7—C1—C6—C5179.4 (8)C39B—C40B—C35—C40A89 (3)
C4—C5—C6—C10.8 (14)C39B—C40B—C35—C34178.4 (19)
C6—C1—C7—C84.4 (15)N4—C34—C35—C3618.0 (12)
C2—C1—C7—C8177.6 (8)O2—C34—C35—C36162.9 (7)
C6—C1—C7—C12176.1 (8)N4—C34—C35—C40B177.0 (15)
C2—C1—C7—C122.0 (9)O2—C34—C35—C40B2.1 (17)
C12—C7—C8—C92.0 (12)N4—C34—C35—C40A144.2 (10)
C1—C7—C8—C9178.5 (8)O2—C34—C35—C40A34.8 (12)
C7—C8—C9—C101.7 (13)C40B—C35—C36—C3715.4 (15)
C8—C9—C10—C112.8 (13)C40A—C35—C36—C3717.5 (12)
C9—C10—C11—C120.1 (13)C34—C35—C36—C37179.3 (8)
C10—C11—C12—C73.6 (12)C35—C36—C37—C38B17.6 (16)
C10—C11—C12—C13176.1 (8)C35—C36—C37—C38A13.7 (10)
C8—C7—C12—C114.7 (12)C36—C37—C38A—C39A2.5 (15)
C1—C7—C12—C11175.7 (7)C38B—C37—C38A—C39A100 (3)
C8—C7—C12—C13175.1 (7)C37—C38A—C39A—C40A5 (2)
C1—C7—C12—C134.5 (9)C38A—C39A—C40A—C351 (2)
C11—C12—C13—N26.7 (14)C36—C35—C40A—C39A10.2 (18)
C7—C12—C13—N2173.1 (7)C40B—C35—C40A—C39A84 (2)
C11—C12—C13—C2174.9 (8)C34—C35—C40A—C39A173.1 (12)
C7—C12—C13—C25.3 (9)C36—C37—C38B—C39B16 (3)
C3—C2—C13—N24.6 (14)C38A—C37—C38B—C39B78 (3)
C1—C2—C13—N2174.3 (8)C35—C40B—C39B—C38B12 (4)
C3—C2—C13—C12177.1 (9)C37—C38B—C39B—C40B12 (4)
C1—C2—C13—C124.1 (8)O1—C14—N1—N23.4 (10)
N1—C14—C15—C16176.4 (8)C15—C14—N1—N2179.9 (6)
O1—C14—C15—C166.7 (11)C12—C13—N2—N1176.6 (7)
N1—C14—C15—C201.0 (12)C2—C13—N2—N15.4 (11)
O1—C14—C15—C20175.8 (8)C12—C13—N2—Cu111.1 (12)
C20—C15—C16—C172.2 (14)C2—C13—N2—Cu1167.0 (6)
C14—C15—C16—C17179.7 (9)C14—N1—N2—C13173.0 (6)
C15—C16—C17—C180.1 (16)C14—N1—N2—Cu113.0 (7)
C16—C17—C18—C190.4 (17)O2—Cu1—N2—C1334.6 (7)
C17—C18—C19—C201.6 (17)O1—Cu1—N2—C13173.3 (7)
C16—C15—C20—C194.3 (15)N3—Cu1—N2—C1369.7 (15)
C14—C15—C20—C19178.2 (9)O2—Cu1—N2—N1137.9 (5)
C18—C19—C20—C154.0 (17)O1—Cu1—N2—N114.2 (5)
C26—C21—C22—C230.0 (11)N3—Cu1—N2—N1117.7 (12)
C27—C21—C22—C23175.8 (7)C22—C33—N3—N4169.9 (6)
C26—C21—C22—C33175.5 (7)C32—C33—N3—N46.2 (11)
C27—C21—C22—C330.3 (8)C22—C33—N3—Cu114.2 (12)
C21—C22—C23—C240.1 (12)C32—C33—N3—Cu1169.7 (5)
C33—C22—C23—C24174.3 (8)O2—Cu1—N3—C33172.5 (7)
C22—C23—C24—C251.1 (13)O1—Cu1—N3—C3335.4 (7)
C23—C24—C25—C261.7 (14)N2—Cu1—N3—C3366.2 (15)
C22—C21—C26—C250.6 (12)O2—Cu1—N3—N411.5 (4)
C27—C21—C26—C25174.2 (8)O1—Cu1—N3—N4140.6 (4)
C24—C25—C26—C211.5 (13)N2—Cu1—N3—N4117.7 (12)
C26—C21—C27—C286.3 (14)O2—C34—N4—N33.7 (11)
C22—C21—C27—C28178.4 (8)C35—C34—N4—N3175.3 (6)
C26—C21—C27—C32172.6 (8)C33—N3—N4—C34172.0 (7)
C22—C21—C27—C322.8 (9)Cu1—N3—N4—C3411.1 (7)
C32—C27—C28—C290.7 (12)N1—C14—O1—Cu18.5 (9)
C21—C27—C28—C29178.0 (8)C15—C14—O1—Cu1168.1 (5)
C27—C28—C29—C300.4 (14)O2—Cu1—O1—C1486.0 (6)
C28—C29—C30—C311.7 (14)N3—Cu1—O1—C14179.5 (5)
C29—C30—C31—C321.8 (13)N2—Cu1—O1—C1411.6 (5)
C30—C31—C32—C270.7 (11)N4—C34—O2—Cu16.2 (10)
C30—C31—C32—C33177.6 (8)C35—C34—O2—Cu1174.8 (6)
C28—C27—C32—C310.6 (11)O1—Cu1—O2—C3488.7 (7)
C21—C27—C32—C31178.4 (7)N3—Cu1—O2—C349.5 (5)
C28—C27—C32—C33177.1 (7)N2—Cu1—O2—C34178.5 (5)
C21—C27—C32—C334.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N10.932.372.888 (10)115
C11—H11···O20.932.402.918 (10)115
C23—H23···O10.932.393.007 (10)124
C31—H31···N40.932.382.898 (9)115

Experimental details

Crystal data
Chemical formula[Cu(C20H13N2O)2]
Mr658.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.437 (2), 25.882 (3), 8.1047 (2)
β (°) 98.205 (3)
V3)2997.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.29 × 0.14 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.807, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
15492, 5331, 2230
Rint0.131
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.227, 1.02
No. of reflections5331
No. of parameters452
No. of restraints127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.70

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.881 (5)C14—O11.325 (8)
Cu1—O11.890 (5)C34—N41.299 (9)
Cu1—N31.986 (6)C34—O21.303 (8)
Cu1—N21.999 (6)N1—N21.378 (8)
C14—N11.300 (8)N3—N41.400 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N10.932.372.888 (10)115
C11—H11···O20.932.402.918 (10)115
C23—H23···O10.932.393.007 (10)124
C31—H31···N40.932.382.898 (9)115
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China Research (grants 20771048 and 20621091) and the Fundamental Research Funds for the Central Universities (grant Nos. lzujbky-2010–27 and lzujbky-2010–29) for financial support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcelli, M., Pelizzi, C., Pelizzi, G., Mazza, P. & Zani, F. (1995). J. Organomet. Chem. 488, 55–61.  CSD CrossRef CAS Web of Science Google Scholar
First citationEl-Sherif, A. A. (2009). Inorg. Chim. Acta, 362, 4991–5000.  Web of Science CrossRef CAS Google Scholar
First citationLi, H. G., Yang, Z. Y., Wang, B. D. & Wu, J. C. (2010). J. Organomet. Chem. 695, 415–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Yang, Z. Y., Qi, G. F. & Qin, D. D. (2009). Eur. J. Med. Chem. 44, 2425–2433.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, Z. Y., Wang, B. D. & Li, Y. H. (2006). J. Organomet. Chem. 691, 4159–4166.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, X., Wei, H. L., Liu, W. S., Wang, D. Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1484-m1485
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds