organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Benzo­thia­zol-2-yl)guanidin-2-ium acetate

aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, bChemistry and Environmental Division, Manchester Metropolitan University, England, and cDepartment of Chemistry, Faculty of Science, Sohag University, Egypt
*Correspondence e-mail: pnh@soton.ac.uk

(Received 13 September 2011; accepted 4 October 2011; online 12 October 2011)

In the title compound, C8H9N4S·C2H3O2, the cation is essentially planar (r.m.s deviation = 0.037 Å) with the guanidine unit bent out of the plane of the fused-ring system by 4.6 (3)°. In the asymmetric unit, the cations and anions are linked into R22(8) motifs. In the crystal, further N—H⋯O and N—H⋯N hydrogen bonds link the components into a two-dimensional network.

Related literature

For the crystal structure of the neutral 2-(1,3-benzothia­zol-2-yl)guanidine mol­ecule, see: Mohamed et al. (2011[Mohamed, S. K., El-Remaily, M. A. A., Soliman, A. M., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o786.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N4S+·C2H3O2

  • Mr = 252.30

  • Orthorhombic, P c a 21

  • a = 12.596 (2) Å

  • b = 11.276 (2) Å

  • c = 8.0936 (12) Å

  • V = 1149.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 120 K

  • 0.14 × 0.10 × 0.02 mm

Data collection
  • Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.962, Tmax = 0.995

  • 7697 measured reflections

  • 1991 independent reflections

  • 1301 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.154

  • S = 1.06

  • 1991 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 897 Friedel pairs

  • Flack parameter: 0.3 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O12 0.88 1.82 2.671 (8) 162
N3—H3A⋯O11i 0.88 2.06 2.760 (8) 136
N3—H3B⋯N1 0.88 2.05 2.713 (9) 131
N4—H4A⋯O12ii 0.88 2.03 2.861 (7) 158
N4—H4B⋯O11 0.88 1.91 2.790 (8) 173
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y, z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was synthesized and exists as the acetate salt of benzothiazolo-2-guanidinium. The benzothiazolo-2-guanidinium cation is almost planar with the guanidine unit bent out of the plane of the fused-ring system by just 4.6 (3)°. In the asymmetric unit, The cations and anions are linked into R22 (8) motif (Bernstein, et al., 1995). The crystal packing is stabilized by intermolecular hydrogen bonds involving the cations and acetate counter-ions, Table 1, Fig.2.

Related literature top

For the crystal structure of the neutral 2-(1,3-benzothiazol-2-yl)guanidine molecule, see: Mohamed et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 1 mmol of 2-guanidyl benzothiazole with few drops of glacial acetic acid was heated in ethanol for 2 hours. The mixture was left at room temperature for two days to afford the shiny white crystals of benzothiazolo-2-guanidinium acetate in 94% yield. The single-crystal was obtained from a slow evaporation of the ethanolic solution of product over two days.

Refinement top

H atoms were positioned geometrically [C—H = 0.95 or 0.98 Å and N—H = 0.88 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) respectively and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram for (I), showing the intermolecular and intramolecular hydrogen bonding (symmetry codes: (i) : -x+1, y,z+1/2; (ii) x+1/2,-y,z)
2-(1,3-Benzothiazol-2-yl)guanidin-2-ium acetate top
Crystal data top
C8H9N4S+·C2H3O2Dx = 1.458 Mg m3
Mr = 252.30Melting point = 463–465 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2099 reflections
a = 12.596 (2) Åθ = 2.9–27.5°
b = 11.276 (2) ŵ = 0.28 mm1
c = 8.0936 (12) ÅT = 120 K
V = 1149.6 (4) Å3Plate, colourless
Z = 40.14 × 0.10 × 0.02 mm
F(000) = 528
Data collection top
Bruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
1991 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1301 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.116
Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1213
Tmin = 0.962, Tmax = 0.995l = 99
7697 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.P)2 + 4.3921P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1991 reflectionsΔρmax = 0.42 e Å3
155 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 897 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (2)
Crystal data top
C8H9N4S+·C2H3O2V = 1149.6 (4) Å3
Mr = 252.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.596 (2) ŵ = 0.28 mm1
b = 11.276 (2) ÅT = 120 K
c = 8.0936 (12) Å0.14 × 0.10 × 0.02 mm
Data collection top
Bruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
1991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1301 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.995Rint = 0.116
7697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.154Δρmax = 0.42 e Å3
S = 1.06Δρmin = 0.36 e Å3
1991 reflectionsAbsolute structure: Flack (1983), 897 Friedel pairs
155 parametersAbsolute structure parameter: 0.3 (2)
1 restraint
Special details top

Experimental. SADABS was used to perform the Absorption correction. Parameter refinement on 6249 reflections reduced R(int) from 0.1275 to 0.0768. Ratio of minimum to maximum apparent transmission: 0.627938. The given Tmin and Tmax were generated using the SHELX SIZE command

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1251 (6)0.3579 (8)0.7101 (8)0.0287 (19)
C20.2293 (5)0.3958 (7)0.7510 (9)0.0232 (17)
C30.2434 (6)0.4986 (7)0.8427 (10)0.037 (2)
H30.31270.52260.87510.045*
C40.1569 (6)0.5650 (8)0.8861 (9)0.037 (2)
H40.16670.63620.94690.044*
C50.0545 (6)0.5299 (8)0.8424 (9)0.037 (2)
H50.00430.57750.87400.044*
C60.0372 (6)0.4267 (8)0.7537 (9)0.034 (2)
H60.03260.40340.72330.040*
C70.2709 (5)0.2345 (7)0.6117 (11)0.0262 (18)
C80.4331 (5)0.1292 (8)0.5459 (9)0.030 (2)
N10.3104 (5)0.3205 (6)0.6934 (7)0.0294 (16)
N20.3265 (4)0.1462 (6)0.5312 (7)0.0295 (16)
H20.29080.09780.46630.035*
N30.4938 (5)0.2037 (6)0.6268 (7)0.0331 (17)
H3A0.56280.19200.63110.040*
H3B0.46550.26540.67680.040*
N40.4741 (5)0.0366 (6)0.4707 (8)0.0347 (17)
H4A0.54300.02410.47430.042*
H4B0.43260.01280.41680.042*
S10.13101 (12)0.22884 (17)0.5956 (3)0.0316 (5)
C110.2365 (6)0.0922 (8)0.3103 (10)0.035 (2)
C120.1654 (6)0.1819 (8)0.2300 (10)0.039 (2)
H12A0.10890.14100.16950.058*
H12B0.13400.23290.31490.058*
H12C0.20690.23040.15310.058*
O110.3349 (4)0.1038 (6)0.2875 (7)0.0417 (15)
O120.1938 (4)0.0085 (5)0.3904 (7)0.0372 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (4)0.041 (6)0.019 (4)0.002 (4)0.003 (3)0.003 (3)
C20.022 (4)0.019 (4)0.029 (4)0.001 (3)0.004 (3)0.000 (3)
C30.018 (3)0.062 (6)0.032 (4)0.006 (5)0.002 (3)0.004 (6)
C40.038 (5)0.035 (6)0.037 (5)0.000 (4)0.008 (4)0.002 (4)
C50.026 (4)0.045 (7)0.040 (5)0.002 (4)0.007 (4)0.008 (4)
C60.016 (4)0.049 (6)0.035 (5)0.007 (4)0.003 (3)0.010 (5)
C70.022 (3)0.036 (5)0.021 (4)0.005 (3)0.003 (4)0.007 (4)
C80.022 (4)0.037 (5)0.031 (5)0.003 (4)0.001 (3)0.010 (4)
N10.017 (3)0.040 (5)0.031 (4)0.002 (3)0.000 (3)0.003 (3)
N20.019 (3)0.040 (5)0.029 (4)0.000 (3)0.001 (3)0.002 (3)
N30.022 (3)0.040 (5)0.037 (4)0.009 (3)0.006 (3)0.001 (4)
N40.015 (3)0.037 (5)0.052 (4)0.003 (3)0.001 (3)0.001 (4)
S10.0167 (7)0.0426 (13)0.0355 (10)0.0010 (9)0.0014 (10)0.0046 (12)
C110.024 (5)0.045 (6)0.035 (5)0.002 (4)0.001 (4)0.000 (4)
C120.029 (4)0.041 (6)0.046 (5)0.002 (4)0.003 (4)0.006 (4)
O110.018 (3)0.049 (4)0.058 (4)0.000 (3)0.006 (2)0.015 (3)
O120.021 (3)0.045 (4)0.045 (3)0.003 (3)0.002 (3)0.010 (3)
Geometric parameters (Å, º) top
C1—C61.398 (10)C8—N31.311 (9)
C1—C21.420 (10)C8—N41.314 (9)
C1—S11.727 (8)C8—N21.361 (8)
C2—C31.388 (11)N2—H20.8800
C2—N11.408 (9)N3—H3A0.8800
C3—C41.368 (10)N3—H3B0.8800
C3—H30.9500N4—H4A0.8800
C4—C51.395 (11)N4—H4B0.8800
C4—H40.9500C11—O111.260 (9)
C5—C61.384 (11)C11—O121.265 (10)
C5—H50.9500C11—C121.499 (10)
C6—H60.9500C12—H12A0.9800
C7—N11.275 (10)C12—H12B0.9800
C7—N21.381 (10)C12—H12C0.9800
C7—S11.768 (6)
C6—C1—C2120.4 (7)N3—C8—N2121.9 (8)
C6—C1—S1129.6 (6)N4—C8—N2117.3 (7)
C2—C1—S1109.8 (6)C7—N1—C2110.3 (6)
C3—C2—N1126.0 (7)C8—N2—C7124.1 (7)
C3—C2—C1119.7 (7)C8—N2—H2118.0
N1—C2—C1114.3 (7)C7—N2—H2118.0
C4—C3—C2119.5 (8)C8—N3—H3A120.0
C4—C3—H3120.3C8—N3—H3B120.0
C2—C3—H3120.3H3A—N3—H3B120.0
C3—C4—C5121.1 (8)C8—N4—H4A120.0
C3—C4—H4119.5C8—N4—H4B120.0
C5—C4—H4119.5H4A—N4—H4B120.0
C6—C5—C4121.1 (8)C1—S1—C788.5 (4)
C6—C5—H5119.5O11—C11—O12124.8 (8)
C4—C5—H5119.5O11—C11—C12117.0 (8)
C5—C6—C1118.2 (7)O12—C11—C12118.2 (7)
C5—C6—H6120.9C11—C12—H12A109.5
C1—C6—H6120.9C11—C12—H12B109.5
N1—C7—N2126.5 (6)H12A—C12—H12B109.5
N1—C7—S1117.0 (6)C11—C12—H12C109.5
N2—C7—S1116.4 (6)H12A—C12—H12C109.5
N3—C8—N4120.7 (7)H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O120.881.822.671 (8)162
N3—H3A···O11i0.882.062.760 (8)136
N3—H3B···N10.882.052.713 (9)131
N4—H4A···O12ii0.882.032.861 (7)158
N4—H4B···O110.881.912.790 (8)173
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y, z.

Experimental details

Crystal data
Chemical formulaC8H9N4S+·C2H3O2
Mr252.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)120
a, b, c (Å)12.596 (2), 11.276 (2), 8.0936 (12)
V3)1149.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.14 × 0.10 × 0.02
Data collection
DiffractometerBruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
7697, 1991, 1301
Rint0.116
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.154, 1.06
No. of reflections1991
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.36
Absolute structureFlack (1983), 897 Friedel pairs
Absolute structure parameter0.3 (2)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O120.881.822.671 (8)162.3
N3—H3A···O11i0.882.062.760 (8)135.6
N3—H3B···N10.882.052.713 (9)130.9
N4—H4A···O12ii0.882.032.861 (7)158.2
N4—H4B···O110.881.912.790 (8)173.1
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y, z.
 

Acknowledgements

The authors would like to thank Manchester Metropolitan University, Sohag University and the EPSRC for funding the crystallographic facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMohamed, S. K., El-Remaily, M. A. A., Soliman, A. M., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds