metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-2-methyl­benzoato-κ8O:O′-bis­­[(ethanol-κO)copper(II)]

aDepartment of Chemistry, Huzhou Teachers College, Huzhou, Zhejiang 313000, People's Republic of China, and bCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, 315211 People's Republic of China
*Correspondence e-mail: shengliangni@163.com

(Received 29 August 2011; accepted 13 October 2011; online 22 October 2011)

In the title dinuclear complex, [Cu2(C8H7O2)4(C2H5OH)2], four 2-methyl­benzoato anions form a cage around two CuII ions in a syn–anti configuration. Two ethanol mol­ecules coordinate the Cu atoms in apical positions, giving an overall square-pyramidal coordination geometry. The Cu⋯Cu separation is 2.600 (1) Å. In the crystal, mol­ecules are assembled into chains extending in [001] through O—H⋯O hydrogen bonds.

Related literature

For the crystal stuctures of related complexes, see: Melnik et al. (1984[Melnik, M., Dunaj Jurco, M. & Handlovic, M. (1984). Inorg. Chim. Acta, 86, 185-190.]); Sunil et al. (2008[Sunil, A. C., Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2008). Acta Cryst. E64, m553-m554.]); Danish et al. (2010[Danish, M., Saleem, I., Tahir, M. N., Ahmad, N. & Raza, A. R. (2010). Acta Cryst. E66, m528.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H7O2)4(C2H6O)2]

  • Mr = 759.76

  • Triclinic, [P \overline 1]

  • a = 10.989 (2) Å

  • b = 12.369 (3) Å

  • c = 14.143 (3) Å

  • α = 66.58 (3)°

  • β = 87.79 (3)°

  • γ = 85.46 (3)°

  • V = 1758.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 298 K

  • 0.28 × 0.12 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.831, Tmax = 0.886

  • 17320 measured reflections

  • 7931 independent reflections

  • 4219 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.166

  • S = 1.15

  • 7931 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H91⋯O5i 0.85 2.04 2.841 (6) 156
O10—H101⋯O4ii 0.86 2.00 2.831 (6) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a number of crystal structures of dinuclear Cu complexes with 2–methylbenzoic acid were published, for example, tetrakis(µ–2–methylbenzoato–κ2O:O')–bis [(methanol–κO)copper(II)] (II)(Danish et al.,2010) and tetrakis(µ–2–methylbenzoato–κ2O:O')–bis [(2–methylbenzoic acid–κO)copper(II)] (III) (Sunil et al., 2008) are among others [see (Melnik et al., 1984)]. Herewith we present the crystal of the title compound (I), a new dinuclear Cu complex with 2–methylbenzoic acid.

In (I) (Fig. 1), four 2–methylbenzoate ligands form a cage around two Cu atoms in a syn-anti configuration. The Cu1···Cu2 separation is 2.600 (1) Å, the Cu—O bond lengths of the cage carboxylates vary in 1.928 (4) – 2.017 (4) Å. The ethanol coordinating bond lengths [Cu1—O9 of 2.149 (4) Å and Cu2—O10 of 2.161 (4) Å)] are normal, though slightly different from those observed in (II), where Cu centers are coordinated by methanol.

In the crystal structure, the molecules are assembled into one-dimensional chains extending in [001] through O—H···O hydrogen bonds.

Related literature top

For the crystal stuctures of related complexes, see: Melnik et al. (1984); Sunil et al. (2008); Danish et al. (2010).

Experimental top

Freshly prepared CuCO3 was essential for an optimal synthysis. At first, 1.0 cm3 (1 M) aqueous Na2CO3 was dropwise added to a stirred aqueous solution of (0.2490 g, 1.0 mmol) CuSO4.5H2O in 4 cm3 of H2O, the produced a blue precipitate, Cu(OH) 2–2x(CO3)x. yH2O, which was centrifuged and washed with doubly distilled water until no SO4-2 anions were detected in the supernatant. The freshly blue precipitate was subsequently added to a stirred solution of 2–methyl benzoic acid (0.5450 g, 4.0 mmol) in 20 cm3 C2H5OH–H2O (1:1,v/v). The mixture was stirred for 1 h and filtered. Insoluble solid was then filtered out, the resulting blue filtrate (pH = 4.80) was allowed to stand at room temperature, and green block crystals were obtained by slow evaporation for some days (yield:42%).

Refinement top

All H–atoms bonded to C were positioned geometrically and refined using a riding model, with d(C–H) = 0.93-0.96 Å and Uiso(H) = 1.2-1.5 Ueq(C). H atoms attached to O atoms were found in a difference Fourier map and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound with atomic numbering. The dispalcement ellipsoids are drawn at 45% probability level. C-bound H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen–bonded (dashed lines) chain. C-bound H atoms omitted for clarity.
Tetra-µ-2-methylbenzoato-κ8O:O'- bis[(ethanol-κO)copper(II)] top
Crystal data top
[Cu2(C8H7O2)4(C2H6O)2]Z = 2
Mr = 759.76F(000) = 788
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.989 (2) ÅCell parameters from 25 reflections
b = 12.369 (3) Åθ = 3.1–27.5°
c = 14.143 (3) ŵ = 1.27 mm1
α = 66.58 (3)°T = 298 K
β = 87.79 (3)°Block, green
γ = 85.46 (3)°0.28 × 0.12 × 0.10 mm
V = 1758.4 (7) Å3
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
7931 independent reflections
Radiation source: fine-focus sealed tube4219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.831, Tmax = 0.886k = 1416
17320 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0292P)2 + 5.9014P]
where P = (Fo2 + 2Fc2)/3
7931 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 1.54 e Å3
0 restraintsΔρmin = 1.64 e Å3
Crystal data top
[Cu2(C8H7O2)4(C2H6O)2]γ = 85.46 (3)°
Mr = 759.76V = 1758.4 (7) Å3
Triclinic, P1Z = 2
a = 10.989 (2) ÅMo Kα radiation
b = 12.369 (3) ŵ = 1.27 mm1
c = 14.143 (3) ÅT = 298 K
α = 66.58 (3)°0.28 × 0.12 × 0.10 mm
β = 87.79 (3)°
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
7931 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4219 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.886Rint = 0.044
17320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.15Δρmax = 1.54 e Å3
7931 reflectionsΔρmin = 1.64 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58348 (6)0.50009 (6)0.33035 (5)0.03815 (19)
Cu20.46734 (6)0.46678 (6)0.18848 (5)0.0400 (2)
O10.7225 (4)0.4244 (4)0.2814 (3)0.0526 (10)
O20.6104 (4)0.3689 (4)0.1814 (3)0.0488 (10)
O30.6149 (4)0.6533 (3)0.2222 (3)0.0456 (10)
O40.5480 (4)0.6110 (3)0.0932 (3)0.0468 (10)
O50.4181 (4)0.5712 (3)0.3508 (3)0.0456 (9)
O60.3379 (4)0.5751 (4)0.2062 (3)0.0472 (10)
O70.5379 (4)0.3471 (3)0.4254 (3)0.0475 (10)
O80.4080 (4)0.3342 (3)0.3120 (3)0.0471 (10)
O90.6783 (3)0.5316 (3)0.4460 (3)0.0439 (9)
H910.62990.50260.49690.053*
O100.3609 (4)0.4337 (4)0.0787 (3)0.0568 (11)
H1010.38570.40440.03520.068*
C10.7095 (6)0.3671 (5)0.2257 (4)0.0469 (14)
C20.8146 (6)0.2912 (5)0.2094 (5)0.0459 (14)
C30.8103 (7)0.2638 (6)0.1239 (5)0.0596 (17)
H6A0.74500.29450.07880.072*
C40.9016 (8)0.1910 (6)0.1042 (6)0.076 (2)
H1A0.89800.17340.04630.091*
C50.9964 (8)0.1459 (7)0.1708 (7)0.085 (3)
H16A1.05790.09690.15850.102*
C61.0021 (7)0.1721 (7)0.2555 (7)0.080 (2)
H2A1.06730.13950.30040.095*
C70.9123 (6)0.2467 (6)0.2769 (5)0.0592 (17)
C80.9261 (8)0.2716 (8)0.3714 (6)0.096 (3)
H86A1.00080.23270.40540.144*
H86B0.85840.24290.41740.144*
H86C0.92780.35520.35190.144*
C90.5966 (5)0.6777 (5)0.1277 (4)0.0398 (13)
C100.6395 (5)0.7941 (5)0.0541 (4)0.0418 (13)
C110.7440 (6)0.8295 (6)0.0808 (5)0.0555 (16)
H12A0.78280.78190.14230.067*
C120.7921 (7)0.9338 (6)0.0185 (6)0.073 (2)
H83A0.86370.95610.03660.088*
C130.7326 (8)1.0048 (6)0.0712 (6)0.076 (2)
H15A0.76421.07550.11440.091*
C140.6286 (8)0.9723 (6)0.0965 (5)0.067 (2)
H29A0.58861.02250.15640.080*
C150.5788 (6)0.8655 (5)0.0357 (4)0.0508 (15)
C160.4611 (7)0.8351 (7)0.0678 (6)0.078 (2)
H21A0.43960.75930.01880.117*
H21B0.47160.83290.13470.117*
H21C0.39740.89390.07020.117*
C170.3361 (5)0.6038 (5)0.2817 (4)0.0415 (13)
C180.2326 (5)0.6838 (5)0.2932 (4)0.0410 (13)
C190.2546 (6)0.7553 (5)0.3447 (5)0.0556 (16)
H18A0.33200.75090.37090.067*
C200.1648 (7)0.8324 (6)0.3579 (6)0.067 (2)
H4A0.18160.88010.39200.081*
C210.0502 (7)0.8382 (6)0.3201 (6)0.070 (2)
H7A0.01150.88930.32910.084*
C220.0272 (6)0.7685 (6)0.2692 (5)0.0657 (19)
H41A0.05090.77340.24410.079*
C230.1162 (6)0.6902 (6)0.2532 (5)0.0543 (16)
C240.0820 (7)0.6149 (8)0.1987 (6)0.083 (2)
H68A0.15240.56650.19310.124*
H68B0.05280.66470.13110.124*
H68C0.01910.56550.23710.124*
C250.4550 (5)0.2973 (5)0.4010 (4)0.0442 (14)
C260.4049 (5)0.1916 (5)0.4846 (4)0.0437 (13)
C270.4027 (6)0.1904 (5)0.5840 (4)0.0524 (16)
H20A0.43760.24990.59580.063*
C280.3494 (7)0.1019 (7)0.6645 (5)0.070 (2)
H65A0.34450.10340.72980.084*
C290.3034 (8)0.0113 (7)0.6471 (6)0.091 (3)
H61A0.26790.04930.70110.109*
C300.3095 (8)0.0097 (6)0.5504 (6)0.081 (2)
H66A0.27900.05310.54050.098*
C310.3604 (6)0.0998 (6)0.4662 (5)0.0580 (17)
C320.3659 (8)0.0916 (6)0.3629 (6)0.079 (2)
H70A0.40270.15940.31340.119*
H70B0.28470.08910.34140.119*
H70C0.41370.02120.36790.119*
C330.8056 (6)0.5374 (8)0.4439 (6)0.073 (2)
H24A0.83170.57750.37290.088*
H24B0.84340.45760.46920.088*
C340.8510 (6)0.5986 (6)0.5052 (5)0.068 (2)
H71A0.93830.59850.49960.102*
H71B0.82790.55840.57610.102*
H71C0.81620.67850.47970.102*
C350.2514 (6)0.3709 (6)0.1090 (5)0.0588 (17)
H10A0.22100.37340.17340.071*
H10B0.27060.28880.12030.071*
C360.1552 (7)0.4221 (7)0.0298 (6)0.078 (2)
H64A0.08400.37800.05240.117*
H64B0.18460.41870.03380.117*
H64C0.13460.50290.01950.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0415 (4)0.0413 (4)0.0305 (3)0.0075 (3)0.0003 (3)0.0122 (3)
Cu20.0427 (4)0.0457 (4)0.0323 (3)0.0081 (3)0.0004 (3)0.0153 (3)
O10.051 (3)0.055 (3)0.058 (3)0.006 (2)0.000 (2)0.029 (2)
O20.051 (3)0.054 (2)0.055 (2)0.005 (2)0.002 (2)0.036 (2)
O30.059 (3)0.042 (2)0.0348 (19)0.0204 (19)0.0013 (18)0.0114 (17)
O40.061 (3)0.048 (2)0.0336 (19)0.018 (2)0.0009 (18)0.0157 (18)
O50.047 (2)0.055 (2)0.037 (2)0.0012 (19)0.0004 (18)0.0210 (18)
O60.049 (2)0.062 (3)0.0323 (19)0.002 (2)0.0009 (18)0.0216 (19)
O70.051 (2)0.045 (2)0.042 (2)0.0176 (19)0.0063 (19)0.0103 (18)
O80.053 (3)0.046 (2)0.040 (2)0.0239 (19)0.0015 (19)0.0119 (18)
O90.047 (2)0.052 (2)0.0370 (19)0.0150 (19)0.0031 (18)0.0194 (18)
O100.053 (3)0.084 (3)0.050 (2)0.022 (2)0.007 (2)0.042 (2)
C10.051 (4)0.039 (3)0.043 (3)0.012 (3)0.001 (3)0.006 (3)
C20.046 (4)0.036 (3)0.053 (3)0.008 (3)0.014 (3)0.015 (3)
C30.071 (5)0.052 (4)0.061 (4)0.009 (3)0.020 (3)0.028 (3)
C40.094 (6)0.058 (4)0.079 (5)0.009 (4)0.026 (5)0.033 (4)
C50.089 (7)0.061 (5)0.095 (6)0.011 (4)0.034 (5)0.027 (5)
C60.063 (5)0.060 (5)0.097 (6)0.014 (4)0.003 (5)0.016 (5)
C70.054 (4)0.050 (4)0.067 (4)0.003 (3)0.006 (3)0.017 (3)
C80.094 (7)0.110 (7)0.088 (6)0.026 (5)0.037 (5)0.046 (6)
C90.039 (3)0.044 (3)0.032 (3)0.000 (3)0.004 (2)0.012 (2)
C100.049 (3)0.038 (3)0.035 (3)0.006 (3)0.001 (3)0.010 (2)
C110.061 (4)0.049 (4)0.052 (4)0.019 (3)0.001 (3)0.013 (3)
C120.079 (5)0.066 (5)0.071 (5)0.030 (4)0.011 (4)0.021 (4)
C130.106 (7)0.050 (4)0.063 (5)0.027 (4)0.024 (5)0.011 (4)
C140.097 (6)0.046 (4)0.046 (4)0.005 (4)0.004 (4)0.007 (3)
C150.065 (4)0.043 (3)0.043 (3)0.001 (3)0.002 (3)0.017 (3)
C160.082 (6)0.072 (5)0.070 (5)0.004 (4)0.026 (4)0.017 (4)
C170.042 (3)0.042 (3)0.031 (3)0.008 (3)0.001 (2)0.004 (2)
C180.043 (3)0.037 (3)0.037 (3)0.008 (3)0.003 (3)0.007 (2)
C190.063 (4)0.049 (4)0.059 (4)0.006 (3)0.006 (3)0.025 (3)
C200.086 (6)0.047 (4)0.076 (5)0.003 (4)0.011 (4)0.031 (4)
C210.062 (5)0.060 (4)0.078 (5)0.011 (4)0.009 (4)0.020 (4)
C220.047 (4)0.074 (5)0.070 (5)0.007 (4)0.009 (3)0.023 (4)
C230.051 (4)0.059 (4)0.048 (3)0.002 (3)0.002 (3)0.016 (3)
C240.057 (5)0.116 (7)0.091 (6)0.004 (5)0.022 (4)0.057 (5)
C250.048 (4)0.046 (3)0.034 (3)0.001 (3)0.007 (3)0.012 (3)
C260.043 (3)0.033 (3)0.047 (3)0.005 (2)0.001 (3)0.007 (3)
C270.061 (4)0.045 (3)0.041 (3)0.003 (3)0.003 (3)0.008 (3)
C280.073 (5)0.067 (5)0.049 (4)0.007 (4)0.012 (4)0.002 (3)
C290.097 (7)0.068 (5)0.072 (5)0.031 (5)0.008 (5)0.014 (4)
C300.094 (6)0.055 (4)0.084 (6)0.038 (4)0.007 (5)0.009 (4)
C310.057 (4)0.047 (4)0.059 (4)0.014 (3)0.008 (3)0.008 (3)
C320.099 (6)0.056 (4)0.083 (5)0.016 (4)0.017 (5)0.025 (4)
C330.042 (4)0.117 (7)0.086 (5)0.023 (4)0.008 (4)0.065 (5)
C340.057 (4)0.075 (5)0.075 (5)0.017 (4)0.012 (4)0.029 (4)
C350.059 (4)0.066 (4)0.053 (4)0.008 (3)0.004 (3)0.024 (3)
C360.058 (5)0.078 (5)0.084 (5)0.014 (4)0.013 (4)0.017 (4)
Geometric parameters (Å, º) top
Cu1—O71.928 (4)C14—H29A0.9300
Cu1—O31.952 (4)C15—C161.509 (9)
Cu1—O11.975 (4)C16—H21A0.9600
Cu1—O52.017 (4)C16—H21B0.9600
Cu1—O92.149 (4)C16—H21C0.9600
Cu1—Cu22.6005 (11)C17—C181.495 (8)
Cu2—O21.931 (4)C18—C191.389 (8)
Cu2—O61.954 (4)C18—C231.402 (8)
Cu2—O81.993 (4)C19—C201.378 (9)
Cu2—O42.008 (4)C19—H18A0.9300
Cu2—O102.161 (4)C20—C211.372 (10)
O1—C11.269 (7)C20—H4A0.9300
O2—C11.271 (7)C21—C221.367 (10)
O3—C91.269 (6)C21—H7A0.9300
O4—C91.270 (6)C22—C231.397 (9)
O5—C171.275 (6)C22—H41A0.9300
O6—C171.252 (6)C23—C241.500 (9)
O7—C251.268 (7)C24—H68A0.9600
O8—C251.271 (6)C24—H68B0.9600
O9—C331.405 (7)C24—H68C0.9600
O9—H910.8523C25—C261.498 (7)
O10—C351.442 (7)C26—C311.389 (8)
O10—H1010.8558C26—C271.399 (8)
C1—C21.500 (8)C27—C281.378 (8)
C2—C31.382 (8)C27—H20A0.9300
C2—C71.391 (9)C28—C291.374 (11)
C3—C41.389 (9)C28—H65A0.9300
C3—H6A0.9300C29—C301.376 (11)
C4—C51.361 (11)C29—H61A0.9300
C4—H1A0.9300C30—C311.401 (9)
C5—C61.363 (11)C30—H66A0.9300
C5—H16A0.9300C31—C321.503 (10)
C6—C71.405 (10)C32—H70A0.9600
C6—H2A0.9300C32—H70B0.9600
C7—C81.501 (10)C32—H70C0.9600
C8—H86A0.9600C33—C341.479 (9)
C8—H86B0.9600C33—H24A0.9700
C8—H86C0.9600C33—H24B0.9700
C9—C101.502 (7)C34—H71A0.9600
C10—C111.378 (8)C34—H71B0.9600
C10—C151.385 (8)C34—H71C0.9600
C11—C121.375 (9)C35—C361.482 (9)
C11—H12A0.9300C35—H10A0.9700
C12—C131.377 (10)C35—H10B0.9700
C12—H83A0.9300C36—H64A0.9600
C13—C141.347 (10)C36—H64B0.9600
C13—H15A0.9300C36—H64C0.9600
C14—C151.400 (9)
O7—Cu1—O3172.78 (16)C15—C14—H29A118.9
O7—Cu1—O190.04 (18)C10—C15—C14117.3 (6)
O3—Cu1—O190.54 (18)C10—C15—C16123.1 (6)
O7—Cu1—O589.64 (17)C14—C15—C16119.5 (6)
O3—Cu1—O587.92 (17)C15—C16—H21A109.5
O1—Cu1—O5164.85 (16)C15—C16—H21B109.5
O7—Cu1—O993.24 (15)H21A—C16—H21B109.5
O3—Cu1—O993.82 (15)C15—C16—H21C109.5
O1—Cu1—O997.89 (16)H21A—C16—H21C109.5
O5—Cu1—O997.25 (15)H21B—C16—H21C109.5
O7—Cu1—Cu287.80 (12)O6—C17—O5124.8 (5)
O3—Cu1—Cu285.12 (11)O6—C17—C18119.1 (5)
O1—Cu1—Cu282.78 (12)O5—C17—C18116.1 (5)
O5—Cu1—Cu282.07 (11)C19—C18—C23119.4 (6)
O9—Cu1—Cu2178.76 (11)C19—C18—C17117.8 (5)
O2—Cu2—O6171.58 (17)C23—C18—C17122.8 (6)
O2—Cu2—O890.35 (18)C20—C19—C18121.7 (7)
O6—Cu2—O890.75 (17)C20—C19—H18A119.1
O2—Cu2—O490.02 (18)C18—C19—H18A119.1
O6—Cu2—O486.69 (17)C21—C20—C19119.3 (7)
O8—Cu2—O4164.46 (15)C21—C20—H4A120.4
O2—Cu2—O1096.24 (17)C19—C20—H4A120.4
O6—Cu2—O1091.96 (17)C22—C21—C20119.7 (7)
O8—Cu2—O1095.56 (16)C22—C21—H7A120.2
O4—Cu2—O1099.84 (16)C20—C21—H7A120.2
O2—Cu2—Cu185.76 (12)C21—C22—C23122.8 (7)
O6—Cu2—Cu186.17 (11)C21—C22—H41A118.6
O8—Cu2—Cu180.87 (11)C23—C22—H41A118.6
O4—Cu2—Cu183.67 (11)C22—C23—C18117.2 (6)
O10—Cu2—Cu1175.93 (12)C22—C23—C24119.1 (6)
C1—O1—Cu1122.8 (4)C18—C23—C24123.6 (6)
C1—O2—Cu2122.0 (4)C23—C24—H68A109.5
C9—O3—Cu1122.4 (4)C23—C24—H68B109.5
C9—O4—Cu2121.0 (3)H68A—C24—H68B109.5
C17—O5—Cu1121.7 (4)C23—C24—H68C109.5
C17—O6—Cu2121.4 (4)H68A—C24—H68C109.5
C25—O7—Cu1119.6 (3)H68B—C24—H68C109.5
C25—O8—Cu2124.4 (4)O7—C25—O8124.5 (5)
C33—O9—Cu1122.3 (4)O7—C25—C26117.4 (5)
C33—O9—H91130.1O8—C25—C26118.0 (5)
Cu1—O9—H9199.7C31—C26—C27120.7 (5)
C35—O10—Cu2121.6 (3)C31—C26—C25123.0 (5)
C35—O10—H10196.1C27—C26—C25116.3 (5)
Cu2—O10—H101128.2C28—C27—C26120.7 (6)
O1—C1—O2124.0 (6)C28—C27—H20A119.7
O1—C1—C2120.0 (6)C26—C27—H20A119.7
O2—C1—C2116.0 (6)C29—C28—C27119.1 (7)
C3—C2—C7120.0 (6)C29—C28—H65A120.4
C3—C2—C1117.1 (6)C27—C28—H65A120.4
C7—C2—C1122.9 (6)C28—C29—C30120.4 (7)
C2—C3—C4121.2 (7)C28—C29—H61A119.8
C2—C3—H6A119.4C30—C29—H61A119.8
C4—C3—H6A119.4C29—C30—C31121.9 (7)
C5—C4—C3119.0 (8)C29—C30—H66A119.0
C5—C4—H1A120.5C31—C30—H66A119.0
C3—C4—H1A120.5C26—C31—C30117.1 (7)
C4—C5—C6120.6 (8)C26—C31—C32123.7 (6)
C4—C5—H16A119.7C30—C31—C32119.2 (6)
C6—C5—H16A119.7C31—C32—H70A109.5
C5—C6—C7121.9 (8)C31—C32—H70B109.5
C5—C6—H2A119.0H70A—C32—H70B109.5
C7—C6—H2A119.0C31—C32—H70C109.5
C2—C7—C6117.3 (7)H70A—C32—H70C109.5
C2—C7—C8124.2 (6)H70B—C32—H70C109.5
C6—C7—C8118.5 (7)O9—C33—C34114.9 (6)
C7—C8—H86A109.5O9—C33—H24A108.6
C7—C8—H86B109.5C34—C33—H24A108.6
H86A—C8—H86B109.5O9—C33—H24B108.6
C7—C8—H86C109.5C34—C33—H24B108.6
H86A—C8—H86C109.5H24A—C33—H24B107.5
H86B—C8—H86C109.5C33—C34—H71A109.5
O3—C9—O4124.9 (5)C33—C34—H71B109.5
O3—C9—C10115.2 (5)H71A—C34—H71B109.5
O4—C9—C10119.8 (5)C33—C34—H71C109.5
C11—C10—C15120.1 (5)H71A—C34—H71C109.5
C11—C10—C9116.5 (5)H71B—C34—H71C109.5
C15—C10—C9123.5 (5)O10—C35—C36111.8 (5)
C12—C11—C10121.3 (6)O10—C35—H10A109.3
C12—C11—H12A119.3C36—C35—H10A109.3
C10—C11—H12A119.3O10—C35—H10B109.3
C11—C12—C13118.9 (7)C36—C35—H10B109.3
C11—C12—H83A120.6H10A—C35—H10B107.9
C13—C12—H83A120.6C35—C36—H64A109.5
C14—C13—C12120.2 (7)C35—C36—H64B109.5
C14—C13—H15A119.9H64A—C36—H64B109.5
C12—C13—H15A119.9C35—C36—H64C109.5
C13—C14—C15122.3 (7)H64A—C36—H64C109.5
C13—C14—H29A118.9H64B—C36—H64C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H91···O5i0.852.042.841 (6)156
O10—H101···O4ii0.862.002.831 (6)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C8H7O2)4(C2H6O)2]
Mr759.76
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.989 (2), 12.369 (3), 14.143 (3)
α, β, γ (°)66.58 (3), 87.79 (3), 85.46 (3)
V3)1758.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.28 × 0.12 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.831, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
17320, 7931, 4219
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.166, 1.15
No. of reflections7931
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 1.64

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H91···O5i0.852.042.841 (6)156
O10—H101···O4ii0.862.002.831 (6)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Huzhou Municipal Foundation of Science and Technology (grant No. 2011 GG15) and the Foundation of the Education Department of Zhejiang Province (grant No. ZC200805662).

References

First citationDanish, M., Saleem, I., Tahir, M. N., Ahmad, N. & Raza, A. R. (2010). Acta Cryst. E66, m528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMelnik, M., Dunaj Jurco, M. & Handlovic, M. (1984). Inorg. Chim. Acta, 86, 185–190.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunil, A. C., Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2008). Acta Cryst. E64, m553–m554.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds