metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­manganese(II)]-bis­­[μ-1,3-bis­­(1H-imidazol-1-ylmeth­yl)benzene-κ2N3:N3′]] dinitrate]

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bEngineering Research Center of Pesticide of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 16 September 2011; accepted 28 September 2011; online 5 October 2011)

In the title compound, {[Mn(C14H14N4)2(H2O)2](NO3)2}n, the MnII ion is located on an inversion center and is coordinated by four N atoms from four 1,3-bis­(1H-imidazol-1-ylmeth­yl)benzene (L) ligands and two water mol­ecules in a distorted octa­hedral geometry. Two L ligands are related by a centre of symmetry and bridge MnII ions, forming a positively charged polymeric chain in [101]. Uncoordinated nitrate anions further link these chains into layers parallel to the ac plane via O—H⋯O hydrogen bonds.

Related literature

For details of the synthesis, see: Yang et al. (2006[Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C., Jia, H.-Q. & Hu, N.-H. (2006). Eur. J. Inorg. Chem. pp. 1208-1215.]). For related structures, see: Dobrzańska et al. (2008[Dobrzańska, L., Kleinhans, D. J. & Barbour, L. J. (2008). New J. Chem. 32, 813-819]); Dobrzańska (2009[Dobrzańska, L. (2009). Acta Cryst. E65, m1326-m1327.]); Yao et al. (2008[Yao, J., Xing, Y.-Y., Xu, Y.-Y., Meng, Q.-J., Gao, S. & Lu, C.-S. (2008). Wuji Huaxue Xuebao, 24, 1636-1642.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C14H14N4)2(H2O)2](NO3)2

  • Mr = 691.58

  • Triclinic, [P \overline 1]

  • a = 8.393 (7) Å

  • b = 9.843 (7) Å

  • c = 10.634 (7) Å

  • α = 98.11 (3)°

  • β = 108.42 (3)°

  • γ = 98.77 (3)°

  • V = 806.8 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 K

  • 0.38 × 0.22 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.842, Tmax = 0.923

  • 6692 measured reflections

  • 3567 independent reflections

  • 2387 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.124

  • S = 1.07

  • 3567 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O1 0.85 1.96 2.701 (3) 146
O4—H42⋯O3i 0.85 2.11 2.800 (3) 138
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, much study has been focused on using nitrogen-containing ligands to construct the supramolecular coordination compounds. The reason is that the supramolecular coordination assemblies not only own variety of architectures but also have the potential applications as functional materials. Recently, several supramolecular complexes based on the 1,3-bis(imidazol-1-yl-methyl)-benzene ligand (L) were reported (Dobrzanska et al., 2008; Dobrzanska, 2009; Yao et al., 2008). In this paper, we report the new title compound (I) synthesized by the reaction of 1,3-bis(imidazol-1-yl-methyl)benzene and manganese dinitrate in an aqueous solution, which forms an infinite one-dimensional chain structure.

In (I) (Fig. 1), six-coordinated MnII ion locates on an inversion center. Its environment formed by four N atoms and two O atoms has a distorted octahedral geometry. Two ligands L related by centre of symmetry bridge MnII ions to form positively charged polymeric chain in [101] (Fig. 2). Uncoordinated nitrate anions link further these chains into layers parallel to ac plane via O—H···O hydrogen bonds (Table 1).

Related literature top

For details of the synthesis, see: Yang et al. (2006). For related structures, see: Dobrzanska et al. (2008); Dobrzanska (2009); Yao et al. (2008).

Experimental top

The 1,3-bis(imidazol-1-yl-methyl)benzene ligand was synthesized following the reference method (Yang et al., 2006). 1,3-Bis(imidazol-1-yl-methyl)benzene (0.2143 g, 1 mmol) and 10 ml (0.1 mol/L) manganese dinitrate aqueous solution were dissolved in 10 ml ethanol. The mixture was stirred at 60 °C for 10 min. The resulting white precipitate was removed. Suitable single crystals were grown by slow evaporation from the mixed solution. White block crystals were obtained in 63 % yield based on manganese.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a differece Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O). The abnormal reflections (3 7 1), (3 -7 1), (-1 6 0), (-2 -6 1) and (1 5 0) have been omitted during the refinement.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 1+x, y, 1+z; (iii) 2-x, 1-y, 2-z].
[Figure 2] Fig. 2. A portion of the positively charged polymeric chain in (I). C-bound H atoms omitted for clarity.
catena-Poly[[[diaquamanganese(II)]-bis[µ-1,3-bis(1H-imidazol-1- ylmethyl)benzene-κ2N3:N3']] dinitrate] top
Crystal data top
[Mn(C14H14N4)2(H2O)2](NO3)2Z = 1
Mr = 691.58F(000) = 359
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.393 (7) ÅCell parameters from 4631 reflections
b = 9.843 (7) Åθ = 3.0–27.4°
c = 10.634 (7) ŵ = 0.47 mm1
α = 98.11 (3)°T = 293 K
β = 108.42 (3)°Block, colourless
γ = 98.77 (3)°0.38 × 0.22 × 0.17 mm
V = 806.8 (10) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3567 independent reflections
Radiation source: fine-focus sealed tube2387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.842, Tmax = 0.923k = 1212
6692 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2405P]
where P = (Fo2 + 2Fc2)/3
3567 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Mn(C14H14N4)2(H2O)2](NO3)2γ = 98.77 (3)°
Mr = 691.58V = 806.8 (10) Å3
Triclinic, P1Z = 1
a = 8.393 (7) ÅMo Kα radiation
b = 9.843 (7) ŵ = 0.47 mm1
c = 10.634 (7) ÅT = 293 K
α = 98.11 (3)°0.38 × 0.22 × 0.17 mm
β = 108.42 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3567 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2387 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.923Rint = 0.031
6692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
3567 reflectionsΔρmin = 0.31 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6014 (3)0.7225 (3)0.8857 (3)0.0887 (8)
C10.3199 (3)0.0680 (3)0.6811 (2)0.0441 (6)
C20.3261 (4)0.0279 (3)0.5759 (3)0.0540 (7)
H20.38260.10100.59390.065*
C30.2480 (4)0.0154 (4)0.4432 (3)0.0663 (8)
H30.25050.08100.37220.080*
C40.1670 (4)0.0941 (3)0.4168 (3)0.0610 (8)
H40.11660.10270.32760.073*
C50.1594 (4)0.1912 (3)0.5202 (3)0.0511 (7)
C60.2370 (3)0.1769 (3)0.6523 (2)0.0485 (6)
H60.23310.24190.72320.058*
C70.0640 (4)0.3091 (4)0.4925 (3)0.0651 (9)
H7A0.05820.26960.45250.078*
H7B0.08400.37150.57760.078*
C80.0300 (4)0.3810 (3)0.2698 (3)0.0557 (7)
H80.07550.32060.22250.067*
C90.2586 (4)0.5332 (4)0.3180 (3)0.0655 (8)
H90.34380.60050.31030.079*
C100.2641 (4)0.4879 (4)0.4333 (3)0.0681 (9)
H100.35120.51740.51730.082*
C110.4068 (4)0.0573 (3)0.8265 (3)0.0504 (6)
H11A0.35110.10260.88270.061*
H11B0.39330.04090.83290.061*
C120.6573 (4)0.2604 (3)0.9098 (3)0.0478 (6)
H120.59220.32920.90700.057*
C130.8680 (4)0.1583 (3)0.9358 (3)0.0524 (7)
H130.97920.14310.95510.063*
C140.7247 (4)0.0567 (3)0.8936 (3)0.0511 (7)
H140.71880.03970.87840.061*
N10.5897 (3)0.1223 (2)0.87739 (19)0.0428 (5)
N20.8254 (3)0.2879 (2)0.9461 (2)0.0457 (5)
N30.1169 (3)0.3907 (3)0.4016 (2)0.0530 (6)
N40.1113 (3)0.4668 (2)0.2149 (2)0.0531 (6)
N50.4591 (3)0.6495 (3)0.8143 (3)0.0552 (6)
O20.3562 (4)0.6999 (3)0.7364 (3)0.1026 (9)
O30.4241 (3)0.5255 (2)0.8242 (3)0.0767 (7)
O40.8056 (3)0.5934 (2)1.0595 (2)0.0590 (5)
H410.77290.66281.02730.089*
H420.73980.52171.06530.089*
Mn11.00000.50001.00000.04181 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0743 (17)0.0536 (14)0.117 (2)0.0082 (13)0.0038 (16)0.0225 (14)
C10.0396 (14)0.0493 (15)0.0368 (13)0.0001 (11)0.0066 (11)0.0134 (11)
C20.0550 (17)0.0573 (18)0.0498 (15)0.0138 (14)0.0155 (14)0.0146 (13)
C30.079 (2)0.076 (2)0.0404 (15)0.0232 (19)0.0160 (15)0.0071 (14)
C40.065 (2)0.081 (2)0.0344 (14)0.0198 (17)0.0108 (13)0.0167 (14)
C50.0486 (16)0.0669 (19)0.0402 (13)0.0150 (14)0.0132 (12)0.0205 (13)
C60.0516 (16)0.0531 (16)0.0367 (13)0.0042 (13)0.0131 (12)0.0087 (11)
C70.066 (2)0.088 (2)0.0552 (17)0.0299 (18)0.0248 (16)0.0338 (17)
C80.0487 (16)0.0636 (19)0.0472 (15)0.0081 (14)0.0037 (13)0.0211 (13)
C90.0556 (19)0.072 (2)0.0518 (17)0.0038 (16)0.0010 (14)0.0159 (15)
C100.059 (2)0.084 (2)0.0426 (16)0.0064 (18)0.0037 (14)0.0134 (15)
C110.0515 (16)0.0490 (16)0.0394 (13)0.0061 (13)0.0056 (12)0.0140 (11)
C120.0471 (16)0.0419 (15)0.0471 (14)0.0089 (12)0.0047 (12)0.0128 (11)
C130.0520 (17)0.0491 (17)0.0521 (15)0.0151 (14)0.0089 (13)0.0140 (13)
C140.0639 (19)0.0358 (14)0.0477 (15)0.0105 (13)0.0101 (14)0.0110 (11)
N10.0467 (12)0.0379 (12)0.0332 (10)0.0003 (10)0.0026 (9)0.0102 (8)
N20.0422 (13)0.0405 (12)0.0439 (12)0.0038 (10)0.0022 (10)0.0098 (9)
N30.0522 (14)0.0656 (16)0.0412 (12)0.0190 (12)0.0084 (11)0.0211 (11)
N40.0503 (14)0.0571 (15)0.0429 (12)0.0083 (12)0.0022 (10)0.0172 (11)
N50.0592 (16)0.0522 (15)0.0580 (14)0.0208 (13)0.0195 (13)0.0157 (12)
O20.098 (2)0.101 (2)0.0990 (19)0.0415 (18)0.0018 (16)0.0411 (17)
O30.0809 (17)0.0468 (14)0.1141 (19)0.0123 (12)0.0465 (15)0.0250 (12)
O40.0575 (12)0.0531 (12)0.0705 (13)0.0177 (10)0.0226 (11)0.0174 (10)
Mn10.0392 (3)0.0404 (3)0.0387 (3)0.0059 (2)0.0039 (2)0.0101 (2)
Geometric parameters (Å, º) top
O1—N51.237 (4)C10—H100.9300
C1—C21.377 (4)C11—N11.462 (4)
C1—C61.383 (4)C11—H11A0.9700
C1—C111.513 (3)C11—H11B0.9700
C2—C31.387 (4)C12—N21.313 (3)
C2—H20.9300C12—N11.340 (3)
C3—C41.375 (4)C12—H120.9300
C3—H30.9300C13—C141.347 (4)
C4—C51.376 (4)C13—N21.376 (3)
C4—H40.9300C13—H130.9300
C5—C61.387 (4)C14—N11.364 (3)
C5—C71.518 (4)C14—H140.9300
C6—H60.9300N2—Mn12.243 (3)
C7—N31.469 (3)N4—Mn1i2.270 (2)
C7—H7A0.9700N5—O21.214 (3)
C7—H7B0.9700N5—O31.238 (3)
C8—N41.317 (4)O4—Mn12.203 (2)
C8—N31.342 (3)O4—H410.8499
C8—H80.9300O4—H420.8501
C9—C101.352 (4)Mn1—O4ii2.203 (2)
C9—N41.361 (4)Mn1—N2ii2.243 (3)
C9—H90.9300Mn1—N4iii2.270 (2)
C10—N31.357 (4)Mn1—N4iv2.270 (2)
C2—C1—C6119.1 (2)N1—C12—H12123.7
C2—C1—C11120.7 (2)C14—C13—N2109.9 (3)
C6—C1—C11120.2 (2)C14—C13—H13125.1
C1—C2—C3120.0 (3)N2—C13—H13125.1
C1—C2—H2120.0C13—C14—N1106.7 (2)
C3—C2—H2120.0C13—C14—H14126.6
C4—C3—C2120.0 (3)N1—C14—H14126.6
C4—C3—H3120.0C12—N1—C14106.3 (2)
C2—C3—H3120.0C12—N1—C11126.1 (2)
C3—C4—C5121.0 (3)C14—N1—C11127.5 (2)
C3—C4—H4119.5C12—N2—C13104.6 (2)
C5—C4—H4119.5C12—N2—Mn1127.07 (18)
C4—C5—C6118.4 (3)C13—N2—Mn1128.24 (19)
C4—C5—C7121.6 (2)C8—N3—C10106.6 (2)
C6—C5—C7120.0 (3)C8—N3—C7126.4 (3)
C1—C6—C5121.5 (2)C10—N3—C7126.9 (2)
C1—C6—H6119.2C8—N4—C9104.3 (2)
C5—C6—H6119.2C8—N4—Mn1i124.1 (2)
N3—C7—C5112.9 (2)C9—N4—Mn1i131.3 (2)
N3—C7—H7A109.0O2—N5—O1119.9 (3)
C5—C7—H7A109.0O2—N5—O3121.1 (3)
N3—C7—H7B109.0O1—N5—O3119.0 (3)
C5—C7—H7B109.0Mn1—O4—H41119.7
H7A—C7—H7B107.8Mn1—O4—H42102.0
N4—C8—N3112.3 (3)H41—O4—H42125.4
N4—C8—H8123.8O4ii—Mn1—O4180.000 (1)
N3—C8—H8123.8O4ii—Mn1—N290.62 (9)
C10—C9—N4110.8 (3)O4—Mn1—N289.38 (9)
C10—C9—H9124.6O4ii—Mn1—N2ii89.38 (9)
N4—C9—H9124.6O4—Mn1—N2ii90.62 (9)
C9—C10—N3106.0 (3)N2—Mn1—N2ii180.00 (11)
C9—C10—H10127.0O4ii—Mn1—N4iii91.51 (9)
N3—C10—H10127.0O4—Mn1—N4iii88.49 (9)
N1—C11—C1112.2 (2)N2—Mn1—N4iii88.86 (9)
N1—C11—H11A109.2N2ii—Mn1—N4iii91.14 (9)
C1—C11—H11A109.2O4ii—Mn1—N4iv88.49 (9)
N1—C11—H11B109.2O4—Mn1—N4iv91.51 (9)
C1—C11—H11B109.2N2—Mn1—N4iv91.14 (9)
H11A—C11—H11B107.9N2ii—Mn1—N4iv88.86 (9)
N2—C12—N1112.6 (2)N4iii—Mn1—N4iv180.000 (1)
N2—C12—H12123.7
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1, z+2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O10.851.962.701 (3)146
O4—H42···O3v0.852.112.800 (3)138
Symmetry code: (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Mn(C14H14N4)2(H2O)2](NO3)2
Mr691.58
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.393 (7), 9.843 (7), 10.634 (7)
α, β, γ (°)98.11 (3), 108.42 (3), 98.77 (3)
V3)806.8 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.38 × 0.22 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.842, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
6692, 3567, 2387
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.07
No. of reflections3567
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.31

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O10.851.962.701 (3)145.7
O4—H42···O3i0.852.112.800 (3)137.6
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (grant No. PG09J001) and Heilongjiang University for supporting this work.

References

First citationDobrzańska, L. (2009). Acta Cryst. E65, m1326–m1327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDobrzańska, L., Kleinhans, D. J. & Barbour, L. J. (2008). New J. Chem. 32, 813–819  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C., Jia, H.-Q. & Hu, N.-H. (2006). Eur. J. Inorg. Chem. pp. 1208–1215.  Web of Science CSD CrossRef Google Scholar
First citationYao, J., Xing, Y.-Y., Xu, Y.-Y., Meng, Q.-J., Gao, S. & Lu, C.-S. (2008). Wuji Huaxue Xuebao, 24, 1636–1642.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds