organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,4-Di­fluoro­phen­yl)[1-(1H-1,2,4-triazol-1-yl)cyclo­prop­yl]methanone

aSchool of Pharmaceutical Sciences, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: kedi2009@126.com

(Received 17 September 2011; accepted 29 September 2011; online 12 October 2011)

The asymmetric unit of the title compound, C12H9F2N3O, contains two independent mol­ecules (A and B) in which the benzene and cyclo­propane rings form dihedral angles of 33.0 (1) and 29.7 (1)°, respectively. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link alternating A and B mol­ecules into chains along [010].

Related literature

For applications of triazole derivatives, see: Che & Zhang (2009[Che, X.-Y. & Zhang, W.-N. (2009). Eur. J. Med. Chem. 44, 4218-4226.]); Lieven & Leo (2005[Lieven, M. & Leo, J. J. (2005). J. Med. Chem. 48, 2184-2193.]). For related structures, see: Tarun et al. (1998[Tarun, K. M., Debasis, D. & Chittaranjan, S. (1998). Inorg. Chem. 37, 1672-1678.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9F2N3O

  • Mr = 249.22

  • Triclinic, [P \overline 1]

  • a = 9.6067 (11) Å

  • b = 11.4840 (13) Å

  • c = 11.9127 (14) Å

  • α = 73.652 (1)°

  • β = 84.202 (2)°

  • γ = 69.260 (1)°

  • V = 1179.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.49 × 0.40 × 0.38 mm

Data collection
  • Rigaku R-AXIS CCD detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.986

  • 5900 measured reflections

  • 4080 independent reflections

  • 2816 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.02

  • 4080 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.93 2.35 3.268 (2) 171
C24—H24A⋯O1ii 0.93 2.37 3.265 (3) 161
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: R-AXIS II Software (Rigaku, 1997[Rigaku (1997). R-AXIS II Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: R-AXIS II Software; data reduction: R-AXIS II Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: TEXSAN (Molecular Structure Corporation, 1992[Molecular Structure Corporation (1992). TEXSAN. MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The triazole derivatives exhibit various antifungal activities (Che & Zhang, 2009; Lieven &Leo, 2005). As our contribution to the research of triazole compounds, herewith we report the crystal structure of the title compound (I).

The asymmetric unit of (I) contains two independent molecules, A and B, respectively (Fig. 1). The benzene and cyclopropane rings form a dihedral angle of 33.0 (1)° in A and 29.7 (1)° in B. All bond lengths and angles in (I) are normal and comparable with those found in related compounds (Tarun et al., 1998). In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link alternating A and B molecules into chains in [010].

Related literature top

For applications of triazole derivatives, see: Che & Zhang (2009); Lieven & Leo (2005). For related structures, see: Tarun et al. (1998).

Experimental top

To a suspension of 2.27 g (10 mmol) of 2-(1H-1,2,4- triazol)-2',4'-difluoroacetophenone and 1.68 g (30 mmol) of KOH in 60 ml of stirred acetone, was cautiously added 2.6 ml (30 mmol) of 1,2-dibromoethane. After the mixture was stirred at room temperature for 6 hr, the mixture was filtered,and then solvent was evaporated. The crystalline product was separated by chromatographic column(petroleum ether:acetone 6:1) with yield 30%. Crystals suitable for X-ray analysis were grown by slow evaporation from acetone at room temperature for two weeks. M.p. 89–90 °C. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3) σ: 8.21(s, 1H), 7.80(s, 1H), 7.40(1H, dd, J=14.5 8.2 Hz), 6.87(m, 1H), 6.73(m, 1H), 2.13(1H, q, J=5.0 Hz), 1.80(1H, q, J=5.0 Hz). 13C NMR (100 MHz, CDCl3) σ: 196.47, 165.45, 165.33, 162.95, 162.83, 160.62, 160.50, 158.12, 157.99, 152.33, 146.44, 130.94, 130.89, 130.83, 130.79, 122.71, 122.67, 122.55, 122.51, 112.48, 112.44, 112.26, 112.23, 105.25, 104.99, 104.73, 49.23, 19.04.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: R-AXIS II Software (Rigaku, 1997); cell refinement: R-AXIS II Software (Rigaku, 1997); data reduction: R-AXIS II Software (Rigaku, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN (Molecular Structure Corporation, 1992); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
(2,4-Difluorophenyl)[1-(1H-1,2,4-triazol-1-yl)cyclopropyl]methanone top
Crystal data top
C12H9F2N3OF(000) = 512
Mr = 249.22Dx = 1.404 Mg m3
Triclinic, P1Melting point: 362.15 K
a = 9.6067 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4840 (13) ÅCell parameters from 2449 reflections
c = 11.9127 (14) Åθ = 4.9–52.5°
α = 73.652 (1)°µ = 0.12 mm1
β = 84.202 (2)°T = 298 K
γ = 69.260 (1)°Block, colourless
V = 1179.4 (2) Å30.49 × 0.40 × 0.38 mm
Z = 4
Data collection top
Rigaku R-AXIS CCD detector
diffractometer
4080 independent reflections
Radiation source: fine-focus sealed tube2816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1011
Tmin = 0.983, Tmax = 0.986k = 1312
5900 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2296P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4080 reflectionsΔρmax = 0.14 e Å3
326 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0200 (19)
Crystal data top
C12H9F2N3Oγ = 69.260 (1)°
Mr = 249.22V = 1179.4 (2) Å3
Triclinic, P1Z = 4
a = 9.6067 (11) ÅMo Kα radiation
b = 11.4840 (13) ŵ = 0.12 mm1
c = 11.9127 (14) ÅT = 298 K
α = 73.652 (1)°0.49 × 0.40 × 0.38 mm
β = 84.202 (2)°
Data collection top
Rigaku R-AXIS CCD detector
diffractometer
4080 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2816 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.017
5900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
4080 reflectionsΔρmin = 0.16 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.40947 (15)0.64219 (16)0.00685 (15)0.1017 (5)
F20.96387 (13)0.81942 (11)0.18986 (12)0.0717 (4)
F30.93617 (18)0.62666 (18)0.51796 (17)0.1195 (6)
F40.49568 (16)0.58407 (11)0.69708 (13)0.0857 (4)
C11.2783 (2)0.6334 (2)0.0552 (2)0.0647 (6)
C21.2443 (2)0.5265 (2)0.0588 (2)0.0668 (6)
H2A1.31020.45970.03020.080*
C31.1099 (2)0.52091 (19)0.10591 (18)0.0584 (5)
H3A1.08510.44850.11020.070*
C41.0094 (2)0.62149 (17)0.14757 (16)0.0478 (5)
C51.0544 (2)0.72398 (18)0.14347 (17)0.0512 (5)
C61.1876 (2)0.7330 (2)0.09827 (18)0.0591 (6)
H6A1.21510.80330.09690.071*
C70.8640 (2)0.61067 (19)0.19488 (18)0.0556 (5)
C80.7238 (2)0.72473 (17)0.16397 (16)0.0463 (5)
C90.5788 (2)0.7042 (2)0.1994 (2)0.0678 (6)
H9A0.49490.75410.14700.081*
H9B0.58170.61750.24030.081*
C100.6327 (3)0.7735 (2)0.26206 (19)0.0700 (6)
H10A0.66890.72910.34130.084*
H10B0.58200.86580.24800.084*
N20.7482 (2)0.78048 (16)0.04611 (14)0.0591 (5)
N30.7144 (2)0.99200 (16)0.08345 (15)0.0647 (5)
C130.8010 (3)0.6783 (3)0.5629 (2)0.0762 (7)
C140.7534 (3)0.8061 (2)0.5600 (2)0.0788 (7)
H14A0.81350.85580.52960.095*
C150.6152 (3)0.8589 (2)0.6032 (2)0.0691 (7)
H15A0.58210.94550.60300.083*
C160.5225 (2)0.78710 (18)0.64746 (18)0.0573 (6)
C170.5794 (3)0.65813 (19)0.64870 (19)0.0604 (6)
C180.7182 (3)0.6007 (2)0.6075 (2)0.0690 (6)
H18A0.75400.51340.61000.083*
C190.3729 (3)0.8500 (2)0.69230 (19)0.0678 (6)
C200.2382 (2)0.83360 (19)0.65607 (17)0.0582 (5)
C210.1380 (3)0.7875 (3)0.7494 (2)0.0928 (9)
H21A0.09000.73200.73420.111*
H21B0.16600.76840.83030.111*
C220.0889 (3)0.9228 (3)0.6814 (2)0.0884 (8)
H22A0.08640.98710.72040.106*
H22B0.01050.95070.62440.106*
N60.2577 (2)0.69776 (17)0.41577 (15)0.0633 (5)
N50.26550 (18)0.87964 (14)0.44550 (14)0.0533 (4)
C120.7074 (2)0.94269 (18)0.02927 (17)0.0536 (5)
H12A0.69070.98940.08460.064*
C110.7406 (3)0.8883 (2)0.12474 (18)0.0662 (6)
H11A0.75250.89300.20420.079*
N10.72688 (16)0.81780 (13)0.05495 (12)0.0423 (4)
N40.25081 (17)0.79612 (14)0.54907 (13)0.0464 (4)
C240.2467 (2)0.68990 (19)0.52741 (19)0.0588 (5)
H24A0.23710.61900.58470.071*
C230.2694 (2)0.81488 (19)0.37037 (18)0.0542 (5)
H23A0.27970.84790.29040.065*
O10.85746 (19)0.50900 (16)0.25590 (17)0.0984 (6)
O20.3590 (2)0.9191 (2)0.75643 (18)0.1132 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0625 (9)0.1236 (13)0.1359 (14)0.0376 (9)0.0205 (9)0.0597 (11)
F20.0660 (8)0.0637 (8)0.0980 (10)0.0180 (6)0.0012 (7)0.0458 (7)
F30.0818 (12)0.1246 (14)0.1586 (17)0.0256 (10)0.0010 (10)0.0595 (13)
F40.1023 (11)0.0479 (7)0.1065 (11)0.0320 (7)0.0159 (8)0.0061 (7)
C10.0459 (12)0.0778 (16)0.0745 (15)0.0183 (11)0.0014 (10)0.0297 (13)
C20.0566 (14)0.0630 (14)0.0824 (16)0.0086 (11)0.0069 (11)0.0345 (12)
C30.0601 (13)0.0419 (11)0.0718 (14)0.0118 (10)0.0159 (11)0.0146 (10)
C40.0504 (11)0.0401 (10)0.0495 (11)0.0122 (9)0.0116 (9)0.0065 (8)
C50.0519 (12)0.0468 (11)0.0566 (12)0.0101 (9)0.0101 (9)0.0215 (9)
C60.0542 (13)0.0580 (13)0.0741 (15)0.0230 (10)0.0108 (11)0.0225 (11)
C70.0643 (13)0.0430 (12)0.0546 (12)0.0207 (10)0.0066 (10)0.0001 (9)
C80.0522 (11)0.0431 (11)0.0444 (11)0.0203 (9)0.0006 (9)0.0075 (8)
C90.0594 (13)0.0629 (14)0.0797 (16)0.0295 (11)0.0040 (11)0.0068 (12)
C100.0797 (16)0.0751 (15)0.0522 (13)0.0272 (13)0.0119 (11)0.0155 (11)
N20.0828 (13)0.0495 (10)0.0472 (10)0.0189 (9)0.0041 (8)0.0197 (8)
N30.0933 (14)0.0466 (10)0.0496 (11)0.0238 (9)0.0031 (9)0.0048 (8)
C130.0669 (16)0.0743 (17)0.0896 (18)0.0180 (14)0.0208 (13)0.0258 (14)
C140.0871 (19)0.0678 (16)0.0901 (18)0.0367 (15)0.0249 (15)0.0121 (14)
C150.0893 (18)0.0437 (12)0.0798 (16)0.0221 (12)0.0336 (14)0.0140 (11)
C160.0774 (15)0.0406 (11)0.0577 (13)0.0164 (10)0.0262 (11)0.0146 (9)
C170.0800 (16)0.0407 (11)0.0635 (14)0.0227 (11)0.0236 (11)0.0075 (10)
C180.0771 (16)0.0447 (12)0.0835 (16)0.0082 (12)0.0308 (13)0.0198 (11)
C190.0935 (18)0.0516 (13)0.0608 (14)0.0151 (12)0.0176 (12)0.0253 (11)
C200.0743 (14)0.0527 (12)0.0469 (12)0.0143 (11)0.0016 (10)0.0210 (10)
C210.117 (2)0.112 (2)0.0538 (15)0.0430 (19)0.0201 (14)0.0304 (15)
C220.0852 (18)0.094 (2)0.0825 (18)0.0074 (15)0.0070 (14)0.0493 (16)
N60.0885 (13)0.0544 (11)0.0570 (11)0.0311 (10)0.0008 (9)0.0215 (9)
N50.0702 (11)0.0415 (9)0.0490 (10)0.0234 (8)0.0010 (8)0.0078 (8)
C120.0735 (14)0.0383 (11)0.0507 (12)0.0181 (10)0.0012 (10)0.0151 (9)
C110.0932 (17)0.0598 (14)0.0409 (12)0.0215 (12)0.0025 (11)0.0111 (11)
N10.0511 (9)0.0361 (8)0.0403 (8)0.0138 (7)0.0024 (7)0.0117 (7)
N40.0597 (10)0.0391 (8)0.0428 (9)0.0187 (7)0.0004 (7)0.0121 (7)
C240.0857 (15)0.0456 (12)0.0534 (13)0.0350 (11)0.0014 (10)0.0105 (9)
C230.0663 (13)0.0528 (12)0.0447 (11)0.0221 (10)0.0050 (9)0.0140 (9)
O10.0834 (12)0.0565 (10)0.1217 (15)0.0247 (9)0.0031 (10)0.0301 (10)
O20.1266 (16)0.1143 (15)0.1246 (16)0.0233 (12)0.0190 (12)0.0879 (14)
Geometric parameters (Å, º) top
F1—C11.357 (3)C13—C141.365 (3)
F2—C51.354 (2)C14—C151.364 (3)
F3—C131.348 (3)C14—H14A0.9300
F4—C171.348 (2)C15—C161.390 (3)
C1—C61.366 (3)C15—H15A0.9300
C1—C21.366 (3)C16—C171.382 (3)
C2—C31.371 (3)C16—C191.483 (3)
C2—H2A0.9300C17—C181.371 (3)
C3—C41.396 (3)C18—H18A0.9300
C3—H3A0.9300C19—O21.215 (2)
C4—C51.378 (3)C19—C201.493 (3)
C4—C71.486 (3)C20—N41.437 (2)
C5—C61.364 (3)C20—C221.498 (3)
C6—H6A0.9300C20—C211.502 (3)
C7—O11.209 (2)C21—C221.464 (4)
C7—C81.498 (3)C21—H21A0.9700
C8—N11.436 (2)C21—H21B0.9700
C8—C91.494 (3)C22—H22A0.9700
C8—C101.503 (3)C22—H22B0.9700
C9—C101.470 (3)N6—C241.303 (3)
C9—H9A0.9700N6—C231.342 (3)
C9—H9B0.9700N5—C231.305 (2)
C10—H10A0.9700N5—N41.363 (2)
C10—H10B0.9700C12—N11.327 (2)
N2—C111.309 (3)C12—H12A0.9300
N2—N11.361 (2)C11—H11A0.9300
N3—C121.307 (2)N4—C241.330 (2)
N3—C111.348 (3)C24—H24A0.9300
C13—C181.364 (3)C23—H23A0.9300
F1—C1—C6117.4 (2)C17—C16—C15116.4 (2)
F1—C1—C2118.9 (2)C17—C16—C19124.0 (2)
C6—C1—C2123.7 (2)C15—C16—C19119.55 (19)
C1—C2—C3117.9 (2)F4—C17—C18118.42 (19)
C1—C2—H2A121.1F4—C17—C16117.9 (2)
C3—C2—H2A121.1C18—C17—C16123.6 (2)
C2—C3—C4121.47 (19)C13—C18—C17116.4 (2)
C2—C3—H3A119.3C13—C18—H18A121.8
C4—C3—H3A119.3C17—C18—H18A121.8
C5—C4—C3116.77 (19)O2—C19—C16119.7 (2)
C5—C4—C7124.50 (17)O2—C19—C20119.5 (2)
C3—C4—C7118.72 (17)C16—C19—C20120.83 (17)
F2—C5—C6117.88 (17)N4—C20—C19116.14 (18)
F2—C5—C4118.42 (18)N4—C20—C22116.23 (18)
C6—C5—C4123.66 (18)C19—C20—C22117.79 (19)
C5—C6—C1116.47 (19)N4—C20—C21117.26 (19)
C5—C6—H6A121.8C19—C20—C21118.64 (19)
C1—C6—H6A121.8C22—C20—C2158.42 (17)
O1—C7—C4120.29 (19)C22—C21—C2060.67 (17)
O1—C7—C8119.54 (19)C22—C21—H21A117.7
C4—C7—C8120.14 (16)C20—C21—H21A117.7
N1—C8—C9116.98 (16)C22—C21—H21B117.7
N1—C8—C7115.56 (15)C20—C21—H21B117.7
C9—C8—C7118.05 (17)H21A—C21—H21B114.8
N1—C8—C10117.75 (16)C21—C22—C2060.91 (16)
C9—C8—C1058.74 (14)C21—C22—H22A117.7
C7—C8—C10117.95 (17)C20—C22—H22A117.7
C10—C9—C860.96 (14)C21—C22—H22B117.7
C10—C9—H9A117.7C20—C22—H22B117.7
C8—C9—H9A117.7H22A—C22—H22B114.8
C10—C9—H9B117.7C24—N6—C23102.17 (16)
C8—C9—H9B117.7C23—N5—N4102.04 (15)
H9A—C9—H9B114.8N3—C12—N1111.64 (17)
C9—C10—C860.30 (14)N3—C12—H12A124.2
C9—C10—H10A117.7N1—C12—H12A124.2
C8—C10—H10A117.7N2—C11—N3115.84 (18)
C9—C10—H10B117.7N2—C11—H11A122.1
C8—C10—H10B117.7N3—C11—H11A122.1
H10A—C10—H10B114.9C12—N1—N2108.90 (15)
C11—N2—N1101.85 (15)C12—N1—C8132.04 (15)
C12—N3—C11101.76 (17)N2—N1—C8119.02 (14)
F3—C13—C18118.3 (2)C24—N4—N5108.55 (15)
F3—C13—C14118.2 (3)C24—N4—C20131.78 (17)
C18—C13—C14123.4 (3)N5—N4—C20119.64 (15)
C15—C14—C13118.1 (2)N6—C24—N4111.46 (18)
C15—C14—H14A120.9N6—C24—H24A124.3
C13—C14—H14A120.9N4—C24—H24A124.3
C14—C15—C16122.0 (2)N5—C23—N6115.78 (18)
C14—C15—H15A119.0N5—C23—H23A122.1
C16—C15—H15A119.0N6—C23—H23A122.1
F1—C1—C2—C3178.8 (2)C17—C16—C19—O2132.8 (2)
C6—C1—C2—C31.6 (4)C15—C16—C19—O245.8 (3)
C1—C2—C3—C40.9 (3)C17—C16—C19—C2049.5 (3)
C2—C3—C4—C52.6 (3)C15—C16—C19—C20131.9 (2)
C2—C3—C4—C7178.48 (19)O2—C19—C20—N4156.3 (2)
C3—C4—C5—F2175.89 (17)C16—C19—C20—N421.4 (3)
C7—C4—C5—F22.9 (3)O2—C19—C20—C2211.7 (3)
C3—C4—C5—C62.1 (3)C16—C19—C20—C22166.0 (2)
C7—C4—C5—C6179.09 (19)O2—C19—C20—C2155.6 (3)
F2—C5—C6—C1178.18 (18)C16—C19—C20—C21126.7 (2)
C4—C5—C6—C10.2 (3)N4—C20—C21—C22105.5 (2)
F1—C1—C6—C5178.23 (19)C19—C20—C21—C22106.7 (2)
C2—C1—C6—C52.1 (3)N4—C20—C22—C21107.2 (2)
C5—C4—C7—O1137.7 (2)C19—C20—C22—C21108.2 (2)
C3—C4—C7—O141.0 (3)C11—N3—C12—N10.4 (2)
C5—C4—C7—C844.3 (3)N1—N2—C11—N30.8 (3)
C3—C4—C7—C8136.94 (19)C12—N3—C11—N20.8 (3)
O1—C7—C8—N1152.1 (2)N3—C12—N1—N20.1 (2)
C4—C7—C8—N125.9 (2)N3—C12—N1—C8177.66 (18)
O1—C7—C8—C96.6 (3)C11—N2—N1—C120.5 (2)
C4—C7—C8—C9171.43 (17)C11—N2—N1—C8178.46 (17)
O1—C7—C8—C1060.9 (3)C9—C8—N1—C1293.1 (2)
C4—C7—C8—C10121.1 (2)C7—C8—N1—C12121.0 (2)
N1—C8—C9—C10107.59 (19)C10—C8—N1—C1226.0 (3)
C7—C8—C9—C10107.3 (2)C9—C8—N1—N284.3 (2)
N1—C8—C10—C9106.28 (19)C7—C8—N1—N261.6 (2)
C7—C8—C10—C9107.5 (2)C10—C8—N1—N2151.36 (17)
F3—C13—C14—C15178.6 (2)C23—N5—N4—C240.2 (2)
C18—C13—C14—C150.7 (4)C23—N5—N4—C20178.35 (17)
C13—C14—C15—C161.0 (3)C19—C20—N4—C24115.3 (2)
C14—C15—C16—C171.9 (3)C22—C20—N4—C2499.5 (3)
C14—C15—C16—C19179.5 (2)C21—C20—N4—C2433.2 (3)
C15—C16—C17—F4176.35 (18)C19—C20—N4—N567.0 (2)
C19—C16—C17—F42.2 (3)C22—C20—N4—N578.1 (2)
C15—C16—C17—C181.1 (3)C21—C20—N4—N5144.4 (2)
C19—C16—C17—C18179.7 (2)C23—N6—C24—N40.2 (2)
F3—C13—C18—C17177.9 (2)N5—N4—C24—N60.0 (2)
C14—C13—C18—C171.4 (3)C20—N4—C24—N6177.81 (19)
F4—C17—C18—C13177.89 (19)N4—N5—C23—N60.4 (2)
C16—C17—C18—C130.5 (3)C24—N6—C23—N50.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.932.353.268 (2)171
C24—H24A···O1ii0.932.373.265 (3)161
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H9F2N3O
Mr249.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.6067 (11), 11.4840 (13), 11.9127 (14)
α, β, γ (°)73.652 (1), 84.202 (2), 69.260 (1)
V3)1179.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.49 × 0.40 × 0.38
Data collection
DiffractometerRigaku R-AXIS CCD detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.983, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5900, 4080, 2816
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.02
No. of reflections4080
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: R-AXIS II Software (Rigaku, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 1992).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.932.353.268 (2)171.4
C24—H24A···O1ii0.932.373.265 (3)161.3
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
 

References

First citationChe, X.-Y. & Zhang, W.-N. (2009). Eur. J. Med. Chem. 44, 4218–4226.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLieven, M. & Leo, J. J. (2005). J. Med. Chem. 48, 2184–2193.  PubMed Google Scholar
First citationMolecular Structure Corporation (1992). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (1997). R-AXIS II Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarun, K. M., Debasis, D. & Chittaranjan, S. (1998). Inorg. Chem. 37, 1672–1678.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds