metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­copper(II)]-μ2-imino­di­acetato-κ4O,N,O′:O′]

aSchool of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
*Correspondence e-mail: wangyuhong@mail.usts.edu.cn

(Received 29 September 2011; accepted 7 October 2011; online 12 October 2011)

In the title compound, [Cu(C4H5O4)(H2O)]n, the imino­diacetate (ida) ligands link the CuII atoms into polymeric zigzag chains running along [010]. Each CuII ion is five-coordinated in a distorted square-pyramidal geometry by one N and two O atoms from an ida ligand, one O atom from the neighbouring ida ligand and one water O atom. In the crystal, the polymeric chains are held together via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For applications of coordination polymers containing bridging carboxyl­ate groups, see: Dey et al. (2003[Dey, S. K., Bag, B., Abdul Malik, K. M., El Fallah, M. S., Ribas, J. & Mitra, S. (2003). Inorg. Chem. 42, 4029-4035.]); Wu et al. (2009[Wu, J.-Y., Ding, M.-T., Wen, Y.-S., Liu, Y.-H. & Lu, K.-L. (2009). Chem. Eur. J. 15, 3604-3614.]); Zhang et al. (2008[Zhang, L., Qin, Y.-Y., Li, Z.-J., Lin, Q.-P., Cheng, J.-K., Zhang, J. & Yao, Y.-G. (2008). Inorg. Chem. 47, 8286-8293.]). For coordination polymers with imino­diacetic acid, see: Bresciani-Pahor et al. (1984[Bresciani-Pahor, N., Nardin, G., Bonomo, R. P. & Rizzarelli, E. (1984). J. Chem. Soc. Dalton Trans. pp. 2625-2630.]); Ren et al. (2003[Ren, Y. P., Long, L. S., Mao, B. W., Yuan, Y. Z., Huang, R. B. & Zheng, L. S. (2003). Angew. Chem. Int. Ed. Engl. 42, 532-535.]); Song et al. (2011[Song, R.-F., Yang, J., Zhong, Q. & Sun, M.-Y. (2011). Chin. J. Struct. Chem. 30, 1127-1131.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H5O4)(H2O)]

  • Mr = 212.65

  • Monoclinic, P 21 /c

  • a = 6.563 (3) Å

  • b = 9.870 (4) Å

  • c = 10.876 (4) Å

  • β = 99.802 (8)°

  • V = 694.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 223 K

  • 0.40 × 0.25 × 0.15 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.369, Tmax = 0.652

  • 3854 measured reflections

  • 1571 independent reflections

  • 1358 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.02

  • 1571 reflections

  • 110 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.87 (1) 2.08 (1) 2.936 (4) 168 (4)
O5—H5B⋯O2ii 0.87 (1) 1.99 (1) 2.860 (4) 171 (4)
N1—H11A⋯O2i 0.86 (1) 2.13 (1) 2.992 (3) 173 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The syntheses of coordination polymers containing bridging carboxylate groups are of current interest due to potential applications in the areas of magnetism, ion exchange and photochemistry (Dey et al., 2003; Wu et al., 2009; Zhang et al., 2008). The iminodiacetic acid has been found to be useful ligand, and a lot of transition metal polymers of iminodiacetic acid have been reported (Bresciani-Pahor et al., 1984; Ren et al., 2003; Song et al., 2011). Here, we report the crystal structure of the title compound, (I), a one-dimensional Cu(II) coordination polymer obtained by the hydrothermal synthesis reaction of iminodiacetic acid and copper(II) chlorine.

The title complex (I) is a one-dimensional zigzag chain coordination polymer, which results from the fact that the copper(II) ions are bridged sequentially by syn-anti carboxylate groups. A perspective view of the mononuclear fragment of (I) is given in Fig. 1. Each copper(II) ion is in a distorted square pyramidal geometry with three donor atoms (O1, N1, O3) of the ida ligand, one oxygen atoms O4A (A -x + 2, y - 1/2, -z + 3/2) belonging to the carboxylate group of one adjacent ida ligand and one terminal O (O5) atom of H2O molecule. Two five-membered chelate rings [–Cu1—O3—C4—C3—N1- and –Cu1—O1—C2—C1—N1-] are formed with the metal atoms, and the two fused ring systems are folded along the common Cu1—N1 axis by 101.5 (1)°. In (I), each ida ligand is tetradentate when the bridge involving atom O4A is considered. One of carboxylate groups of each ida ligand is in an syn-anti conformation with respect to the two copper centres. Thus, the carboxylate groups act as bridges and connect the copper(II) centers to form a 1-D zigzag chain coordination polymer.

The one-dimensional polymeric chains are packed through intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) to form three-dimensional structure (Fig. 2).

Related literature top

For applications of coordination polymers containing bridging carboxylate groups, see: Dey et al. (2003); Wu et al. (2009); Zhang et al. (2008). For coordination polymers with iminodiacetic acid, see: Bresciani-Pahor et al. (1984); Ren et al. (2003); Song et al. (2011).

Experimental top

CuCl2.2H2O (0.0171 g, 0.1 mmol), iminodiacetic acid (0.0133 g, 0.1 mmol), NaOH (0.0084 g, 0.2 mmol), H2O (0.5 mL) and ethanol (3 mL) were placed in a thick Pyrex tube and heated at 120°C for 3 days. After cooling at a rate of 5°C/h to the ambient temperature, blue block crystals were collected, washed with anhydrous ethanol, and then dried at room temperature. The yield is 76% based on iminodiacetic acid. Analysis found: C, 22.98; H, 3.36; N, 6.56%. Calculated for C4H7CuNO5: C, 22.59; H, 3.32; N, 6.59%.

Refinement top

C-bound H atoms were geometrically positioned and refinded using a riding model, with Uiso(H) = 1.2 Ueq(C) [d(C—H) = 0.98Å (for CH2)]. H atoms attached to N and O were located on difference maps and refined with N—H distances restrained to 0.87 (1)Å (Uiso(H) = 1.2 Ueq(N)), and with O—H distances retsrained to 0.86 (1) Å (Uiso(H) = 1.2 Ueq(O)).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I), showing the atomic numbering and 30% probabilty displacement ellipsoids [symmetry codes: (A) -x + 2, y - 1/2, -z + 3/2; (B) -x + 2, y + 1/2, -z + 3/2]
[Figure 2] Fig. 2. A portion of the crystal packing viewed approximately down the a axis. Dashed lines denote hydrogen bonds. H atoms with no hydrogen bond interactions have been omitted for clarity.
catena-Poly[[aquacopper(II)]-µ-iminodiacetato- κ4O,N,O':O'] top
Crystal data top
[Cu(C4H5O4)(H2O)]F(000) = 428
Mr = 212.65Dx = 2.035 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 3372 reflections
a = 6.563 (3) Åθ = 3.1–27.5°
b = 9.870 (4) ŵ = 3.12 mm1
c = 10.876 (4) ÅT = 223 K
β = 99.802 (8)°Block, blue
V = 694.2 (5) Å30.40 × 0.25 × 0.15 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
1571 independent reflections
Radiation source: fine-focus sealed tube1358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 14.63 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1212
Tmin = 0.369, Tmax = 0.652l = 914
3854 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.046P)2 + 0.157P]
where P = (Fo2 + 2Fc2)/3
1571 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.45 e Å3
3 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(C4H5O4)(H2O)]V = 694.2 (5) Å3
Mr = 212.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.563 (3) ŵ = 3.12 mm1
b = 9.870 (4) ÅT = 223 K
c = 10.876 (4) Å0.40 × 0.25 × 0.15 mm
β = 99.802 (8)°
Data collection top
Rigaku Saturn
diffractometer
1571 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1358 reflections with I > 2σ(I)
Tmin = 0.369, Tmax = 0.652Rint = 0.026
3854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.45 e Å3
1571 reflectionsΔρmin = 0.48 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.85030 (5)0.23532 (3)0.75251 (3)0.02015 (14)
O10.6802 (4)0.2321 (2)0.5873 (2)0.0312 (5)
O20.4101 (3)0.3228 (3)0.4674 (2)0.0378 (6)
O30.9803 (3)0.4446 (2)0.7449 (2)0.0312 (5)
O40.9274 (3)0.64968 (19)0.8186 (2)0.0265 (5)
O50.9679 (4)0.1781 (3)0.9246 (2)0.0454 (6)
H5A0.897 (6)0.212 (4)0.978 (3)0.054*
H5B1.1022 (18)0.184 (5)0.945 (4)0.054*
N10.6164 (4)0.3497 (2)0.7986 (2)0.0200 (5)
H11A0.546 (4)0.303 (3)0.844 (3)0.024*
C10.4669 (4)0.3788 (3)0.6828 (3)0.0263 (6)
H1A0.46390.47670.66740.032*
H1B0.32820.35110.69490.032*
C20.5202 (5)0.3069 (3)0.5707 (3)0.0256 (6)
C30.7073 (4)0.4735 (3)0.8622 (3)0.0226 (6)
H3A0.75680.45370.95050.027*
H3B0.60110.54400.85710.027*
C40.8864 (4)0.5246 (3)0.8023 (3)0.0208 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0235 (2)0.0177 (2)0.0204 (2)0.00209 (13)0.00672 (14)0.00000 (13)
O10.0320 (12)0.0387 (12)0.0226 (12)0.0087 (10)0.0042 (9)0.0061 (9)
O20.0342 (12)0.0540 (14)0.0233 (13)0.0085 (11)0.0003 (10)0.0008 (11)
O30.0306 (12)0.0195 (10)0.0491 (15)0.0004 (9)0.0229 (10)0.0010 (9)
O40.0341 (11)0.0187 (9)0.0297 (12)0.0081 (9)0.0138 (9)0.0055 (8)
O50.0394 (14)0.0669 (18)0.0307 (15)0.0129 (14)0.0085 (11)0.0028 (12)
N10.0231 (12)0.0185 (11)0.0202 (13)0.0033 (10)0.0085 (9)0.0004 (9)
C10.0233 (14)0.0289 (15)0.0263 (17)0.0006 (13)0.0030 (12)0.0012 (12)
C20.0284 (16)0.0253 (14)0.0235 (16)0.0030 (13)0.0055 (12)0.0000 (12)
C30.0265 (15)0.0171 (12)0.0263 (16)0.0019 (11)0.0101 (12)0.0053 (11)
C40.0203 (14)0.0199 (13)0.0215 (15)0.0032 (11)0.0016 (11)0.0019 (11)
Geometric parameters (Å, º) top
Cu1—O11.948 (2)O5—H5B0.873 (10)
Cu1—O4i1.955 (2)N1—C31.478 (3)
Cu1—O51.981 (3)N1—C11.486 (4)
Cu1—N12.036 (2)N1—H11A0.863 (10)
Cu1—O32.241 (2)C1—C21.503 (4)
O1—C21.271 (4)C1—H1A0.9800
O2—C21.238 (4)C1—H1B0.9800
O3—C41.234 (3)C3—C41.523 (4)
O4—C41.270 (3)C3—H3A0.9800
O4—Cu1ii1.955 (2)C3—H3B0.9800
O5—H5A0.873 (10)
O1—Cu1—O4i88.70 (10)C1—N1—H11A104 (2)
O1—Cu1—O5159.50 (11)Cu1—N1—H11A110 (2)
O4i—Cu1—O593.05 (10)N1—C1—C2112.6 (2)
O1—Cu1—N184.15 (10)N1—C1—H1A109.1
O4i—Cu1—N1168.97 (9)C2—C1—H1A109.1
O5—Cu1—N196.58 (10)N1—C1—H1B109.1
O1—Cu1—O398.23 (9)C2—C1—H1B109.1
O4i—Cu1—O393.97 (8)H1A—C1—H1B107.8
O5—Cu1—O3102.01 (11)O2—C2—O1122.9 (3)
N1—Cu1—O378.80 (8)O2—C2—C1119.7 (3)
C2—O1—Cu1116.8 (2)O1—C2—C1117.4 (3)
C4—O3—Cu1110.15 (17)N1—C3—C4110.7 (2)
C4—O4—Cu1ii121.34 (19)N1—C3—H3A109.5
Cu1—O5—H5A111 (3)C4—C3—H3A109.5
Cu1—O5—H5B116 (3)N1—C3—H3B109.5
H5A—O5—H5B116 (4)C4—C3—H3B109.5
C3—N1—C1113.1 (2)H3A—C3—H3B108.1
C3—N1—Cu1108.17 (17)O3—C4—O4125.4 (3)
C1—N1—Cu1108.40 (17)O3—C4—C3119.5 (2)
C3—N1—H11A113 (2)O4—C4—C3115.0 (2)
O4i—Cu1—O1—C2164.3 (2)O3—Cu1—N1—C193.24 (18)
O5—Cu1—O1—C2100.5 (3)C3—N1—C1—C2125.0 (3)
N1—Cu1—O1—C27.3 (2)Cu1—N1—C1—C25.1 (3)
O3—Cu1—O1—C270.5 (2)Cu1—O1—C2—O2173.5 (2)
O1—Cu1—O3—C4100.6 (2)Cu1—O1—C2—C16.1 (3)
O4i—Cu1—O3—C4170.2 (2)N1—C1—C2—O2179.3 (3)
O5—Cu1—O3—C476.2 (2)N1—C1—C2—O10.3 (4)
N1—Cu1—O3—C418.2 (2)C1—N1—C3—C482.1 (3)
O1—Cu1—N1—C3129.37 (18)Cu1—N1—C3—C438.0 (3)
O4i—Cu1—N1—C379.5 (5)Cu1—O3—C4—O4177.6 (2)
O5—Cu1—N1—C371.24 (19)Cu1—O3—C4—C31.3 (3)
O3—Cu1—N1—C329.75 (17)Cu1ii—O4—C4—O31.8 (4)
O1—Cu1—N1—C16.38 (17)Cu1ii—O4—C4—C3179.27 (19)
O4i—Cu1—N1—C143.5 (5)N1—C3—C4—O324.3 (4)
O5—Cu1—N1—C1165.77 (18)N1—C3—C4—O4156.6 (2)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1iii0.87 (1)2.08 (1)2.936 (4)168 (4)
O5—H5B···O2iv0.87 (1)1.99 (1)2.860 (4)171 (4)
N1—H11A···O2iii0.86 (1)2.13 (1)2.992 (3)173 (3)
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C4H5O4)(H2O)]
Mr212.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)6.563 (3), 9.870 (4), 10.876 (4)
β (°) 99.802 (8)
V3)694.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.40 × 0.25 × 0.15
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.369, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
3854, 1571, 1358
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.02
No. of reflections1571
No. of parameters110
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.48

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.873 (10)2.076 (14)2.936 (4)168 (4)
O5—H5B···O2ii0.873 (10)1.994 (13)2.860 (4)171 (4)
N1—H11A···O2i0.863 (10)2.134 (11)2.992 (3)173 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Suzhou University of Science and Technology for financial support.

References

First citationBresciani-Pahor, N., Nardin, G., Bonomo, R. P. & Rizzarelli, E. (1984). J. Chem. Soc. Dalton Trans. pp. 2625–2630.  Google Scholar
First citationDey, S. K., Bag, B., Abdul Malik, K. M., El Fallah, M. S., Ribas, J. & Mitra, S. (2003). Inorg. Chem. 42, 4029–4035.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRen, Y. P., Long, L. S., Mao, B. W., Yuan, Y. Z., Huang, R. B. & Zheng, L. S. (2003). Angew. Chem. Int. Ed. Engl. 42, 532–535.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, R.-F., Yang, J., Zhong, Q. & Sun, M.-Y. (2011). Chin. J. Struct. Chem. 30, 1127–1131.  CAS Google Scholar
First citationWu, J.-Y., Ding, M.-T., Wen, Y.-S., Liu, Y.-H. & Lu, K.-L. (2009). Chem. Eur. J. 15, 3604–3614.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, L., Qin, Y.-Y., Li, Z.-J., Lin, Q.-P., Cheng, J.-K., Zhang, J. & Yao, Y.-G. (2008). Inorg. Chem. 47, 8286–8293.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds