metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzyl­tri­methyl­ammonium) dichromate(VI)

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jinlei8812@163.com

(Received 3 October 2011; accepted 18 October 2011; online 22 October 2011)

The asymmetric part of the title compound, (C10H16N)2[Cr2O7], contains one cation and a half of the dichromate dianion, which has a staggered conformation and exhibits disorder of the bridging O atom around the inversion center over two positions in a 1:1 ratio. Weak inter­molecular C—H⋯O hydrogen bonds link cations and anions into a three-dimensional structure.

Related literature

For related structure, see: Jin et al. (2011[Jin, L., Liu, N., Li, Y.-J. & Wu, D.-H. (2011). Acta Cryst. E67, m1325.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H16N)2[Cr2O7]

  • Mr = 516.48

  • Monoclinic, P 21 /n

  • a = 8.8550 (18) Å

  • b = 12.442 (3) Å

  • c = 10.919 (2) Å

  • β = 91.75 (3)°

  • V = 1202.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Rigaku Mercury2 (2x2 bin mode) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.778, Tmax = 0.834

  • 10940 measured reflections

  • 2356 independent reflections

  • 2070 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.07

  • 2356 reflections

  • 148 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4i 0.96 2.58 3.308 (4) 133
C2—H2A⋯O1ii 0.96 2.59 3.467 (4) 153
C2—H2B⋯O2 0.96 2.53 3.416 (5) 154
C2—H2C⋯O4iii 0.96 2.42 3.294 (4) 152
C4—H4B⋯O4iii 0.97 2.52 3.393 (4) 149
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our structural study of organic-inorganic salts with benzyltrimethylammonium cations (Jin et al., 2011), we present here the title compound, (I).

The asymmetric unit of (I) consists of one half dichromate dianion and one benzyltrimethylammonium cation (Fig 1). The dichromate anion exhibits disorder of the bridging O3 atom around the invesion center over two positions in a ratio 1:1. The terminal bond distances of Cr–O are in the range 1.595 (3) - 1.610 (2) Å, and the bond angles of O–Cr–O vary in the range of 108.37 (17)–110.92 (14)°. The bridging Cr–O are in the range 1.754 (6) - 1.766 (6) Å, and the bond angles of O–Cr–O vary from 94.7 (2) to 120.51 (19) °. Atom O3 is disordered over two positions (separated by 0.794 (9) Å) in a ratio 1:1.

There are no classical hydrogen bonds in (I). The benzyltriethylammonium cations interact with the Cr2O72- anions through the weak intermolecular C–H···O hydrogen-bonded interactions (Table 1).

Related literature top

For related structure, see: Jin et al. (2011).

Experimental top

At room temperature, benzyltriethylammoniumchlorine (10 mmol, 2.28 g) was dissolved in 30 ml water, then a solution with (NH4)2Cr2O7 (5 mmol, 1.26 g) was dropped slowly into the solution with proper sirring. Yellow solid blocks appeared after several days (yield 75%). Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after two weeks in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement top

H atoms were placed in calculated positions(C—H = 0.93-0.97 Å), and refined as riding, with Uiso = 1.2-1.5 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled atoms by the (-x, 2 - y, 1 - z) symmetry transformation.
Bis(benzyltrimethylammonium) dichromate(VI) top
Crystal data top
(C10H16N)2[Cr2O7]Z = 2
Mr = 516.48F(000) = 540
Monoclinic, P21/nDx = 1.427 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.8550 (18) Åθ = 3.0–26.0°
b = 12.442 (3) ŵ = 0.94 mm1
c = 10.919 (2) ÅT = 291 K
β = 91.75 (3)°Block, orange
V = 1202.4 (4) Å30.28 × 0.24 × 0.20 mm
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2356 independent reflections
Radiation source: fine-focus sealed tube2070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
CCD_Profile_fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.778, Tmax = 0.834l = 1313
10940 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.057P)2 + 0.6088P]
where P = (Fo2 + 2Fc2)/3
2356 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.42 e Å3
60 restraintsΔρmin = 0.50 e Å3
Crystal data top
(C10H16N)2[Cr2O7]V = 1202.4 (4) Å3
Mr = 516.48Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.8550 (18) ŵ = 0.94 mm1
b = 12.442 (3) ÅT = 291 K
c = 10.919 (2) Å0.28 × 0.24 × 0.20 mm
β = 91.75 (3)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2356 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2070 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.834Rint = 0.035
10940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04060 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
2356 reflectionsΔρmin = 0.50 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6409 (4)0.8457 (3)0.5418 (3)0.0524 (7)
H1A0.71180.80250.58840.079*
H1B0.54730.84930.58380.079*
H1C0.68090.91680.53260.079*
C20.5041 (4)0.8658 (3)0.3458 (3)0.0558 (8)
H2A0.54480.93700.33920.084*
H2B0.41000.86870.38690.084*
H2C0.48770.83610.26530.084*
C30.7592 (3)0.7905 (2)0.3526 (3)0.0486 (7)
H3A0.79810.86180.34180.073*
H3B0.74230.75740.27390.073*
H3C0.83080.74870.40010.073*
C40.5429 (3)0.6849 (2)0.4291 (3)0.0470 (7)
H4A0.44910.69190.47210.056*
H4B0.51790.65830.34750.056*
C50.6397 (3)0.6029 (2)0.4944 (3)0.0456 (7)
C60.6318 (4)0.5878 (3)0.6211 (3)0.0541 (8)
H60.57000.63210.66640.065*
C70.7141 (4)0.5085 (3)0.6794 (3)0.0649 (9)
H70.70740.49970.76360.078*
C80.8061 (4)0.4422 (3)0.6148 (4)0.0681 (10)
H80.86240.38900.65490.082*
C90.8143 (4)0.4550 (3)0.4892 (4)0.0670 (9)
H90.87550.40960.44470.080*
C100.7327 (4)0.5344 (3)0.4300 (3)0.0537 (7)
H100.73970.54240.34570.064*
Cr10.10047 (4)0.88613 (3)0.53692 (4)0.03659 (18)
N10.6137 (2)0.79616 (18)0.4177 (2)0.0407 (5)
O10.2580 (3)0.9159 (2)0.6062 (2)0.0755 (7)
O20.1341 (4)0.8252 (3)0.4124 (2)0.0863 (8)
O30.0066 (8)0.9953 (5)0.4646 (4)0.0720 (13)0.50
O40.0014 (3)0.8091 (2)0.6192 (2)0.0753 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0550 (17)0.0549 (18)0.0474 (16)0.0100 (15)0.0024 (13)0.0200 (14)
C20.0458 (17)0.0575 (19)0.064 (2)0.0067 (14)0.0047 (14)0.0065 (15)
C30.0398 (14)0.0510 (16)0.0555 (17)0.0065 (13)0.0098 (12)0.0085 (13)
C40.0387 (14)0.0534 (17)0.0487 (15)0.0164 (12)0.0005 (12)0.0095 (13)
C50.0472 (15)0.0467 (16)0.0428 (14)0.0196 (12)0.0002 (12)0.0070 (12)
C60.0624 (19)0.0548 (18)0.0452 (16)0.0195 (15)0.0041 (14)0.0092 (14)
C70.085 (2)0.062 (2)0.0471 (17)0.0263 (19)0.0090 (17)0.0004 (15)
C80.076 (2)0.053 (2)0.075 (2)0.0156 (18)0.0153 (19)0.0049 (17)
C90.071 (2)0.0492 (19)0.082 (2)0.0072 (16)0.0116 (18)0.0101 (17)
C100.0634 (19)0.0508 (17)0.0474 (16)0.0124 (15)0.0093 (14)0.0062 (14)
Cr10.0359 (3)0.0317 (3)0.0421 (3)0.00047 (16)0.00114 (18)0.00768 (16)
N10.0331 (11)0.0450 (12)0.0439 (12)0.0033 (9)0.0015 (9)0.0107 (10)
O10.0554 (14)0.0929 (18)0.0772 (16)0.0188 (13)0.0147 (12)0.0001 (14)
O20.0880 (18)0.104 (2)0.0677 (16)0.0161 (16)0.0182 (14)0.0238 (15)
O30.090 (3)0.056 (2)0.070 (3)0.030 (2)0.003 (3)0.015 (3)
O40.0664 (14)0.0954 (18)0.0642 (14)0.0221 (13)0.0029 (12)0.0330 (13)
Geometric parameters (Å, º) top
C1—N11.501 (3)C5—C61.400 (4)
C1—H1A0.9600C6—C71.371 (5)
C1—H1B0.9600C6—H60.9300
C1—H1C0.9600C7—C81.370 (5)
C2—N11.504 (4)C7—H70.9300
C2—H2A0.9600C8—C91.384 (5)
C2—H2B0.9600C8—H80.9300
C2—H2C0.9600C9—C101.373 (5)
C3—N11.492 (3)C9—H90.9300
C3—H3A0.9600C10—H100.9300
C3—H3B0.9600Cr1—O21.593 (3)
C3—H3C0.9600Cr1—O41.595 (2)
C4—C51.498 (4)Cr1—O11.610 (2)
C4—N11.527 (4)Cr1—O3i1.754 (6)
C4—H4A0.9700Cr1—O31.766 (6)
C4—H4B0.9700O3—O3i0.794 (9)
C5—C101.392 (4)O3—Cr1i1.754 (6)
N1—C1—H1A109.5C8—C7—H7119.7
N1—C1—H1B109.5C6—C7—H7119.7
H1A—C1—H1B109.5C7—C8—C9119.4 (4)
N1—C1—H1C109.5C7—C8—H8120.3
H1A—C1—H1C109.5C9—C8—H8120.3
H1B—C1—H1C109.5C10—C9—C8120.4 (3)
N1—C2—H2A109.5C10—C9—H9119.8
N1—C2—H2B109.5C8—C9—H9119.8
H2A—C2—H2B109.5C9—C10—C5120.9 (3)
N1—C2—H2C109.5C9—C10—H10119.5
H2A—C2—H2C109.5C5—C10—H10119.5
H2B—C2—H2C109.5O2—Cr1—O4108.37 (16)
N1—C3—H3A109.5O2—Cr1—O1109.21 (16)
N1—C3—H3B109.5O4—Cr1—O1110.92 (14)
H3A—C3—H3B109.5O2—Cr1—O3i120.51 (19)
N1—C3—H3C109.5O4—Cr1—O3i101.8 (2)
H3A—C3—H3C109.5O1—Cr1—O3i105.7 (3)
H3B—C3—H3C109.5O2—Cr1—O394.7 (2)
C5—C4—N1115.2 (2)O4—Cr1—O3117.0 (3)
C5—C4—H4A108.5O1—Cr1—O3115.0 (3)
N1—C4—H4A108.5O3i—Cr1—O326.1 (3)
C5—C4—H4B108.5C3—N1—C1109.4 (2)
N1—C4—H4B108.5C3—N1—C2109.3 (2)
H4A—C4—H4B107.5C1—N1—C2108.6 (2)
C10—C5—C6117.7 (3)C3—N1—C4111.0 (2)
C10—C5—C4121.0 (3)C1—N1—C4110.7 (2)
C6—C5—C4121.1 (3)C2—N1—C4107.8 (2)
C7—C6—C5120.9 (3)O3i—O3—Cr1i77.8 (9)
C7—C6—H6119.5O3i—O3—Cr176.1 (8)
C5—C6—H6119.5Cr1i—O3—Cr1153.9 (3)
C8—C7—C6120.7 (3)
N1—C4—C5—C1093.3 (3)C5—C4—N1—C358.0 (3)
N1—C4—C5—C691.1 (3)C5—C4—N1—C163.7 (3)
C10—C5—C6—C70.4 (4)C5—C4—N1—C2177.7 (2)
C4—C5—C6—C7176.2 (3)O2—Cr1—O3—O3i172.0 (11)
C5—C6—C7—C80.0 (5)O4—Cr1—O3—O3i58.6 (12)
C6—C7—C8—C90.7 (5)O1—Cr1—O3—O3i74.2 (11)
C7—C8—C9—C100.9 (5)O2—Cr1—O3—Cr1i172.0 (11)
C8—C9—C10—C50.4 (5)O4—Cr1—O3—Cr1i58.6 (12)
C6—C5—C10—C90.3 (4)O1—Cr1—O3—Cr1i74.2 (11)
C4—C5—C10—C9176.0 (3)O3i—Cr1—O3—Cr1i0.0
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4ii0.962.583.308 (4)133
C2—H2A···O1iii0.962.593.467 (4)153
C2—H2B···O20.962.533.416 (5)154
C2—H2C···O4iv0.962.423.294 (4)152
C4—H4B···O4iv0.972.523.393 (4)149
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula(C10H16N)2[Cr2O7]
Mr516.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)8.8550 (18), 12.442 (3), 10.919 (2)
β (°) 91.75 (3)
V3)1202.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.778, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
10940, 2356, 2070
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.07
No. of reflections2356
No. of parameters148
No. of restraints60
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.50

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.962.583.308 (4)133.1
C2—H2A···O1ii0.962.593.467 (4)152.6
C2—H2B···O20.962.533.416 (5)154.2
C2—H2C···O4iii0.962.423.294 (4)152.0
C4—H4B···O4iii0.972.523.393 (4)149.0
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

LJ thanks the Ordered Matter Science Research Centre, Southeast University.

References

First citationJin, L., Liu, N., Li, Y.-J. & Wu, D.-H. (2011). Acta Cryst. E67, m1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds