organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hy­dr­oxy-4-meth­­oxy­benzyl­­idene)-3-nitro­benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@yahoo.cn

(Received 10 October 2011; accepted 10 October 2011; online 12 October 2011)

In the mol­ecule of the title compound, C15H13N3O3, an intra­molecular O—H⋯N hydrogen bond influences the planarity of the conformation; the dihedral angle between the benzene rings is 11.4 (3)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains in [101].

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Tang (2010[Tang, C.-B. (2010). Acta Cryst. E66, o2482.], 2011[Tang, C.-B. (2011). Acta Cryst. E67, o271.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O5

  • Mr = 315.28

  • Monoclinic, P 21 /n

  • a = 6.0099 (12) Å

  • b = 33.575 (3) Å

  • c = 7.319 (2) Å

  • β = 94.235 (2)°

  • V = 1472.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.28 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.976

  • 7720 measured reflections

  • 3155 independent reflections

  • 1786 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.140

  • S = 1.02

  • 3155 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.618 (2) 146
N2—H2⋯O3i 0.90 (1) 1.93 (1) 2.806 (2) 165 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have received much attention in biological and structural chemistry in the last years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010). Herewith we report the crystal structure of the title new hydrazone compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the similar compounds (Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010; Tang, 2010, 2011). Intramolecular O1—H1···N1 hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the two benzene rings in the molecule is 11.4 (3)°.

In the crystal structure, the molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) into chains in [101] (Fig. 2).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010, 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-Hydroxy-4-methoxybenzaldehyde (0.1 mmol, 15.2 mg) and 3-nitrobenzohydrazide (0.1 mmol, 18.1 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear yellow solution. Yellow crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

The amino H atom was located in a difference Fourier map and refined with the N—H distance restrained to 0.90 (1) Å and Uiso(H) fixed to 0.081 Å2. Other H atoms were constrained to ideal geometries and refined as riding, with Csp2—H = 0.93 Å, C(methyl)—H = 0.96 Å, and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen bonds as dashed lines. H atoms non-involved in hydrogen bonding omitted for clarity.
N'-(2-Hydroxy-4-methoxybenzylidene)-3-nitrobenzohydrazide top
Crystal data top
C15H13N3O5F(000) = 656
Mr = 315.28Dx = 1.422 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.0099 (12) ÅCell parameters from 1287 reflections
b = 33.575 (3) Åθ = 2.4–24.5°
c = 7.319 (2) ŵ = 0.11 mm1
β = 94.235 (2)°T = 298 K
V = 1472.9 (5) Å3Prism, yellow
Z = 40.28 × 0.23 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3155 independent reflections
Radiation source: fine-focus sealed tube1786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 75
Tmin = 0.970, Tmax = 0.976k = 4232
7720 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.3356P]
where P = (Fo2 + 2Fc2)/3
3155 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C15H13N3O5V = 1472.9 (5) Å3
Mr = 315.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.0099 (12) ŵ = 0.11 mm1
b = 33.575 (3) ÅT = 298 K
c = 7.319 (2) Å0.28 × 0.23 × 0.22 mm
β = 94.235 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3155 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1786 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.976Rint = 0.032
7720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
3155 reflectionsΔρmin = 0.19 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0936 (3)0.21111 (6)0.6779 (2)0.0459 (5)
N20.2422 (3)0.24250 (6)0.7037 (3)0.0472 (5)
N30.2828 (5)0.42054 (7)0.6691 (3)0.0671 (7)
O10.2996 (3)0.18085 (5)0.5833 (2)0.0539 (5)
H10.20730.19870.60140.081*
O20.4045 (3)0.04481 (5)0.6539 (3)0.0825 (7)
O30.0352 (3)0.28027 (5)0.5016 (2)0.0612 (5)
O40.0861 (4)0.42267 (6)0.6147 (3)0.0896 (7)
O50.3980 (4)0.44949 (6)0.7108 (4)0.1024 (8)
C10.0134 (4)0.14277 (7)0.7182 (3)0.0399 (5)
C20.2087 (4)0.14565 (7)0.6411 (3)0.0415 (6)
C30.3392 (4)0.11219 (7)0.6220 (3)0.0491 (6)
H30.48530.11430.57140.059*
C40.2565 (4)0.07541 (7)0.6771 (4)0.0542 (7)
C50.0387 (4)0.07155 (8)0.7520 (4)0.0576 (7)
H50.01830.04680.78790.069*
C60.0911 (4)0.10532 (7)0.7716 (3)0.0484 (6)
H60.23670.10290.82290.058*
C70.1574 (4)0.17699 (7)0.7403 (3)0.0429 (6)
H70.29840.17430.80050.052*
C80.1974 (4)0.27655 (7)0.6130 (3)0.0426 (6)
C90.3498 (4)0.31068 (7)0.6582 (3)0.0402 (6)
C100.2601 (4)0.34854 (7)0.6341 (3)0.0450 (6)
H100.11500.35190.58290.054*
C110.3873 (4)0.38098 (7)0.6867 (3)0.0485 (6)
C120.6058 (4)0.37744 (8)0.7558 (3)0.0571 (7)
H120.69030.39990.78860.069*
C130.6960 (4)0.33984 (8)0.7750 (3)0.0555 (7)
H130.84360.33690.82080.067*
C140.5706 (4)0.30664 (7)0.7273 (3)0.0471 (6)
H140.63360.28140.74130.057*
C150.3370 (7)0.00624 (8)0.7178 (5)0.1146 (14)
H15A0.21710.00310.64950.172*
H15B0.46080.01180.70150.172*
H15C0.28770.00770.84540.172*
H20.348 (3)0.2395 (6)0.796 (2)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0437 (11)0.0445 (12)0.0478 (11)0.0099 (9)0.0071 (9)0.0019 (9)
N20.0437 (12)0.0440 (12)0.0510 (12)0.0081 (9)0.0174 (10)0.0054 (9)
N30.0820 (19)0.0471 (15)0.0735 (16)0.0082 (14)0.0150 (14)0.0049 (12)
O10.0434 (10)0.0495 (10)0.0671 (11)0.0005 (8)0.0078 (8)0.0074 (9)
O20.0778 (15)0.0504 (12)0.1165 (18)0.0212 (10)0.0107 (12)0.0072 (11)
O30.0612 (11)0.0506 (10)0.0663 (11)0.0004 (9)0.0333 (9)0.0013 (9)
O40.0782 (16)0.0575 (13)0.132 (2)0.0101 (11)0.0040 (15)0.0009 (12)
O50.1152 (19)0.0491 (12)0.141 (2)0.0223 (13)0.0003 (16)0.0134 (13)
C10.0397 (13)0.0441 (14)0.0359 (12)0.0019 (11)0.0026 (10)0.0008 (10)
C20.0426 (14)0.0422 (14)0.0397 (12)0.0007 (11)0.0028 (10)0.0025 (10)
C30.0389 (14)0.0531 (16)0.0547 (15)0.0068 (12)0.0007 (11)0.0025 (12)
C40.0579 (17)0.0451 (15)0.0595 (16)0.0141 (13)0.0038 (13)0.0010 (12)
C50.0612 (18)0.0455 (15)0.0657 (17)0.0033 (13)0.0019 (14)0.0053 (13)
C60.0414 (14)0.0516 (15)0.0518 (14)0.0004 (12)0.0008 (11)0.0041 (12)
C70.0404 (13)0.0491 (15)0.0382 (12)0.0008 (11)0.0042 (10)0.0003 (11)
C80.0415 (13)0.0453 (14)0.0397 (12)0.0023 (11)0.0055 (11)0.0004 (11)
C90.0390 (13)0.0464 (14)0.0345 (12)0.0073 (11)0.0015 (10)0.0002 (10)
C100.0434 (14)0.0506 (15)0.0409 (13)0.0033 (11)0.0026 (11)0.0033 (11)
C110.0557 (16)0.0463 (15)0.0447 (13)0.0066 (13)0.0113 (12)0.0010 (11)
C120.0559 (17)0.0647 (18)0.0512 (15)0.0247 (14)0.0071 (12)0.0048 (13)
C130.0415 (14)0.0711 (19)0.0534 (15)0.0141 (13)0.0004 (12)0.0016 (13)
C140.0407 (14)0.0562 (15)0.0444 (13)0.0018 (11)0.0034 (11)0.0020 (11)
C150.138 (3)0.0462 (19)0.154 (3)0.029 (2)0.029 (3)0.020 (2)
Geometric parameters (Å, º) top
N1—C71.281 (3)C5—C61.378 (3)
N1—N21.386 (2)C5—H50.9300
N2—C81.339 (3)C6—H60.9300
N2—H20.900 (9)C7—H70.9300
N3—O51.219 (3)C8—C91.489 (3)
N3—O41.221 (3)C9—C101.387 (3)
N3—C111.471 (3)C9—C141.392 (3)
O1—C21.357 (2)C10—C111.369 (3)
O1—H10.8200C10—H100.9300
O2—C41.361 (3)C11—C121.377 (3)
O2—C151.426 (3)C12—C131.377 (3)
O3—C81.230 (2)C12—H120.9300
C1—C61.387 (3)C13—C141.376 (3)
C1—C21.414 (3)C13—H130.9300
C1—C71.440 (3)C14—H140.9300
C2—C31.372 (3)C15—H15A0.9600
C3—C41.380 (3)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.388 (3)
C7—N1—N2117.28 (18)C1—C7—H7119.6
C8—N2—N1118.54 (17)O3—C8—N2122.4 (2)
C8—N2—H2125.0 (14)O3—C8—C9120.9 (2)
N1—N2—H2115.5 (14)N2—C8—C9116.69 (18)
O5—N3—O4123.6 (3)C10—C9—C14119.1 (2)
O5—N3—C11117.9 (3)C10—C9—C8116.77 (19)
O4—N3—C11118.6 (2)C14—C9—C8124.1 (2)
C2—O1—H1109.5C11—C10—C9119.3 (2)
C4—O2—C15118.5 (2)C11—C10—H10120.3
C6—C1—C2117.5 (2)C9—C10—H10120.3
C6—C1—C7120.3 (2)C10—C11—C12122.1 (2)
C2—C1—C7122.1 (2)C10—C11—N3117.9 (2)
O1—C2—C3117.9 (2)C12—C11—N3120.0 (2)
O1—C2—C1122.1 (2)C13—C12—C11118.3 (2)
C3—C2—C1120.1 (2)C13—C12—H12120.8
C2—C3—C4120.8 (2)C11—C12—H12120.8
C2—C3—H3119.6C14—C13—C12120.8 (2)
C4—C3—H3119.6C14—C13—H13119.6
O2—C4—C3114.9 (2)C12—C13—H13119.6
O2—C4—C5124.6 (2)C13—C14—C9120.2 (2)
C3—C4—C5120.5 (2)C13—C14—H14119.9
C6—C5—C4118.3 (2)C9—C14—H14119.9
C6—C5—H5120.8O2—C15—H15A109.5
C4—C5—H5120.8O2—C15—H15B109.5
C5—C6—C1122.7 (2)H15A—C15—H15B109.5
C5—C6—H6118.6O2—C15—H15C109.5
C1—C6—H6118.6H15A—C15—H15C109.5
N1—C7—C1120.8 (2)H15B—C15—H15C109.5
N1—C7—H7119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.618 (2)146
N2—H2···O3i0.90 (1)1.93 (1)2.806 (2)165 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13N3O5
Mr315.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.0099 (12), 33.575 (3), 7.319 (2)
β (°) 94.235 (2)
V3)1472.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
7720, 3155, 1786
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.140, 1.02
No. of reflections3155
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.618 (2)145.7
N2—H2···O3i0.900 (9)1.928 (11)2.806 (2)165 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2010). Acta Cryst. E66, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2011). Acta Cryst. E67, o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds