organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3024-o3025

N-(1-Acryloyl-2,2,6,6-tetra­methyl­piperidin-4-yl)acryl­amide

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 13 October 2011; accepted 14 October 2011; online 22 October 2011)

The title compound, C15H24N2O2, crystallizes with two unique mol­ecules, (I) and (II), in the asymmetric unit, differing in the orientation of the acryloyl units with respect to the piperidine rings. The acryl­amide units are essentially planar in both mol­ecules (r.m.s. deviations = 0.042 and 0.024 Å, respectively), as are the C3N chains of the acryloyl units. The carbonyl O atoms of the acryloyl systems lie significantly out of these planes, viz. by −0.171 (9) Å for molecule (I) and by 0.33 (1) Å for molecule (II). The acryl­amide and acryloyl planes are inclined at 68.7 (4)° and 59.8 (3)° in the two mol­ecules. The piperidine rings each adopt twist boat conformations. In the crystal, strong N—H⋯O hydrogen bonds link the mol­ecules into zigzag C(4) chains along b. Additional C—H⋯O contacts result in the formation of stacks along a.

Related literature

For the synthesis and applications, see: Murayama & Morimura (1971[Murayama, K. & Morimura, S. (1971). Ger. Offen. DE2040983A.]); Matsui et al. (1972[Matsui, K., Kurumada, T., Ohta, N., Watanabe, I., Murayama, K. & Morimura, S. (1972). Ger. Offen. DE2040975B2.]). Very few structures of compounds similar to the title compound have been reported previously. The most closely related 2,2,6,6-tetra­methyl­piperidine structures are both nitroxide radicals but also have acryl­amide substituents in the 4-position, see: Duskova et al. (2006[Duskova, J., Labsky, J., Dusek, M. & Hasek, J. (2006). Acta Cryst. E62, o811-o813.]); Qiu et al. (2009[Qiu, X., Zhao, H. & Lan, M. (2009). J. Organomet. Chem. 694, 3958-3964.]). For other related 2,2,6,6-tetra­methyl­piperidine structures, see: Cygler, Dobrynin et al. (1980[Cygler, M., Dobrynin, K. & Perrin, M. (1980). Acta Cryst. B36, 2478-2480.]); Cygler, Skarżyński et al. (1980[Cygler, M., Skarżyński, T., Skolimowski, J. & Thozet, A. (1980). Acta Cryst. B36, 2481-2483.]); Cygler, Markowicz et al. (1980[Cygler, M., Markowicz, T., Skolimowski, J. & Skowronski, R. (1980). J. Mol. Struct. 68, 161-171.]); Cygler (1981[Cygler, M. (1981). Acta Cryst. B37, 1771-1773.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.])

[Scheme 1]

Experimental

Crystal data
  • C15H24N2O2

  • Mr = 264.36

  • Monoclinic, P 21

  • a = 7.5810 (4) Å

  • b = 9.2635 (4) Å

  • c = 21.4193 (9) Å

  • β = 91.612 (2)°

  • V = 1503.61 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 91 K

  • 0.65 × 0.24 × 0.14 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.690, Tmax = 0.744

  • 9141 measured reflections

  • 2252 independent reflections

  • 2169 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 18.6°

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.069

  • S = 1.12

  • 2252 reflections

  • 357 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N22—H22N⋯O17 0.87 (3) 2.02 (3) 2.888 (4) 171 (3)
N12—H12N⋯O27i 0.87 (3) 1.98 (3) 2.841 (4) 177 (3)
C15—H15B⋯O13ii 0.99 2.67 3.613 (4) 159
Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound has been used for stabilization of synthetic polymers against photo and thermal deterioration (Murayama & Morimura, 1971; Matsui et al., 1972). Our synthesis and interest relates to its use as a cross-linker in our work with electroactive polymers. The title compound, crystallizes with two unique molecules (I), Fig. 1a, and (II), Fig. 1b, linked in the asymmetric unit by an N—H···O hydrogen bond. Overlaying the two molecules in Mercury (Macrae et al., 2008), Fig 2, gives an r.m.s. deviation of 0.90 Å. The major differences lie in the orientation of the acryloyl units with respect to the piperidine rings, exemplified by the torsion angles C14–N11–C13–O13, -151.1 (3)° for (I) and C24–N21–C23–O23, -20.0 (5)° for (II). Each piperidine ring adopts a twist boat conformation with the acrylamide substituents equatorial. The N12–C17(O17)–C18–C19 and N22–C27(O27)–C28–C29 acrylamide substituents are planar, r.m.s. deviations 0.043 Å and 0.024 Å respectively as are the N11–C13–C12–C11 and N21–C23–C22–C21 chains of the acryloyl units with deviations 0.030 and 0.095 Å.

A search of the Cambridge Database (version 5.32, November 2010, with 5 updates; Allen, 2002) for 2,2,6,6-tetramethylpiperidine residues with C substituents on both the 1 and 4-positions revealed only 4 piperidinol derivatives (Cygler, Dobrynin et al., 1980; Cygler, Skarżyński et al., 1980; Cygler, Markowicz et al., 1980; Cygler, 1981). Only two structures with acrylamide substituents in the 4-position were found (Duskova et al., 2006); Qiu et al., 2009), both involving nitroxide radicals. Bond distances and angles in the acrylamide segments of these structures compare well with those reported here.

In the crystal, C(4) chains (Bernstein et al., 1995) of molecules form along the b axis linked by strong intermolecular N—H···O hydrogen bonds (Table 1, Fig 3). Additional C15–H15B···O13 contacts (Table 1) cause the chains to form stacks along the a axis (Fig. 4).

Related literature top

For the synthesis and applications, see: Murayama & Morimura (1971); Matsui et al. (1972). Structurally, the title compound is novel with few similar compounds reported previously. The most closely related 2,2,6,6-tetramethylpiperidine structures are both nitroxide radicals but also have acrylamide substituents in the 4-position, see: Duskova et al. (2006); Qiu et al. (2009). For other related 2,2,6,6-tetramethylpiperidine structures, see: Cygler, Dobrynin et al. (1980); Cygler, Skarżyński et al. (1980); Cygler, Markowicz et al. (1980); Cygler (1981). For details of the Cambridge Structural Database, see: Allen (2002); and for hydrogen-bond motifs, see: Bernstein et al. (1995)

Experimental top

The title compound was synthesized in a manner similar to that previously reported (Murayama & Morimura, 1971). Following purification by column chromatography on silica gel and recrystallization, X-ray quality crystals of the title compound, N-(1-acryloyl-2,2,6,6-tetramethylpiperidin-4-yl)acrylamide were obtained from a CDCl3 solution layered with ethanol. M.p. 113°C. 1H NMR (400 MHz, CDCl3): 6.53 & 6.28 [2 × (1H, dd, J = 1, 18 Hz, trans- =CH2)], 6.10 (2H, m, 2 × –CH=), 5.9 (1H, bs, amide NH), 5.64 & 5.49 [2 × (1H, dd, J = 1, 10 Hz, cis- =CH2)], 4.40 (1H, m, pip CH), 2.25 & 1.77 [2 × (2H, dd, J = 8, 16 Hz, pip CH2)], 1.53 & 1.49 [2 × (6H, s, CH3)]. 13C NMR (500 MHz, CDCl3): 169.9, 164.9, 135.5, 130.6, 126.7, 124.0, 56.1, 44.1, 40.3, 31.2, 29.7.

Refinement top

Crystals were very weakly diffracting and data of reasonable intensity could not be obtained beyond θ = 18.5°. This also contributes to the relatively poor data/parameter ratio observed for this refinement. The absolute structure could not be determined reliably due to the absence of significant anomalous scattering effects. The Flack parameter is not therefore reported. One reflection, signalled in CheckCIF as likely to be affected by the beamstop, was omitted from the final refinement cycles.

The H atoms bound to the amide N atoms were found in a difference Fourier map and their coordinates refined with Uiso=1.2Ueq (N). All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å, for aromatic, 0.99Å for methylene and 1.00 for methine H atoms. The CH2 and C–H H atoms of the acryloyl and acrylamide units had d(C—H) = 0.95 Å. All of these had Uiso=1.2Ueq (C). For the methyl H atoms d(C—H) = 0.98 Å with Uiso = 1.5Ueq (C).

Computing details top

Data collection: APEX2 (Bruker 2009); cell refinement: APEX2 and SAINT (Bruker 2009); data reduction: SAINT (Bruker 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of independent molecules I (a) and II (b) of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. An overlay of the two unique molecules 1 & 2. The r.m.s. deviation is 0.90 Å.
[Figure 3] Fig. 3. Zigzag C(4) chains along b formed by N–H···O hydrogen bonds.
[Figure 4] Fig. 4. Crystal packing of molecules of the title compound.
N-(1-Acryloyl-2,2,6,6-tetramethylpiperidin-4-yl)acrylamide top
Crystal data top
C15H24N2O2F(000) = 576
Mr = 264.36Dx = 1.168 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3272 reflections
a = 7.5810 (4) Åθ = 2.4–18.6°
b = 9.2635 (4) ŵ = 0.08 mm1
c = 21.4193 (9) ÅT = 91 K
β = 91.612 (2)°Block, colourless
V = 1503.61 (12) Å30.65 × 0.24 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
2252 independent reflections
Radiation source: fine-focus sealed tube2169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 18.6°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.690, Tmax = 0.744k = 88
9141 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.031P)2 + 0.2286P]
where P = (Fo2 + 2Fc2)/3
2252 reflections(Δ/σ)max < 0.001
357 parametersΔρmax = 0.10 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C15H24N2O2V = 1503.61 (12) Å3
Mr = 264.36Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.5810 (4) ŵ = 0.08 mm1
b = 9.2635 (4) ÅT = 91 K
c = 21.4193 (9) Å0.65 × 0.24 × 0.14 mm
β = 91.612 (2)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
2252 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2169 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.744Rint = 0.040
9141 measured reflectionsθmax = 18.6°
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.10 e Å3
2252 reflectionsΔρmin = 0.12 e Å3
357 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.6512 (5)0.7963 (4)0.58401 (18)0.0351 (10)
H11A0.75740.84540.57480.042*
H11B0.63070.76560.62550.042*
C120.5323 (5)0.7710 (3)0.53929 (17)0.0266 (9)
H120.42660.72190.54900.032*
C130.5611 (6)0.8182 (4)0.47352 (16)0.0254 (9)
O130.7087 (4)0.8616 (2)0.45947 (10)0.0331 (6)
N110.4267 (4)0.8008 (3)0.42980 (12)0.0235 (7)
C140.2342 (4)0.8154 (3)0.44501 (15)0.0223 (9)
C1410.2071 (4)0.9268 (3)0.49667 (14)0.0264 (9)
H14A0.26080.89150.53590.040*
H14B0.08050.94210.50200.040*
H14C0.26261.01820.48520.040*
C1420.1516 (4)0.6705 (4)0.46339 (15)0.0315 (10)
H14D0.16600.60050.42960.047*
H14E0.02560.68420.47070.047*
H14F0.21040.63430.50160.047*
C150.1346 (4)0.8760 (3)0.38813 (14)0.0215 (9)
H15A0.18410.97180.37800.026*
H15B0.00940.88990.39860.026*
C160.1433 (4)0.7795 (3)0.33054 (15)0.0216 (9)
H160.05580.69960.33490.026*
N120.0923 (4)0.8644 (3)0.27579 (14)0.0248 (8)
H12N0.091 (4)0.958 (4)0.2776 (15)0.030*
C170.0539 (4)0.8041 (4)0.22070 (18)0.0244 (9)
O170.0605 (3)0.6724 (3)0.21106 (10)0.0312 (6)
C180.0062 (4)0.9074 (4)0.17059 (18)0.0293 (10)
H180.01161.00590.18100.035*
C190.0126 (4)0.8670 (4)0.11159 (19)0.0351 (10)
H19A0.00480.76890.10040.042*
H19B0.04340.93610.08040.042*
C1100.3267 (4)0.7126 (4)0.32590 (15)0.0255 (9)
H11C0.35720.70990.28130.031*
H11D0.32040.61140.34060.031*
C1110.4782 (4)0.7879 (4)0.36235 (15)0.0231 (9)
C1120.5237 (5)0.9342 (4)0.33346 (15)0.0338 (10)
H11E0.41700.99360.32990.051*
H11F0.57120.91900.29190.051*
H11G0.61210.98330.36010.051*
C1130.6372 (4)0.6870 (4)0.35721 (15)0.0354 (10)
H11H0.74450.73770.37130.053*
H11I0.64890.65710.31360.053*
H11J0.61990.60160.38340.053*
C210.5528 (5)0.3323 (4)0.09531 (17)0.0352 (10)
H21A0.65550.27360.09560.042*
H21B0.49560.35960.13360.042*
C220.4897 (4)0.3759 (4)0.04192 (17)0.0272 (9)
H220.38700.43450.04200.033*
C230.5771 (6)0.3345 (3)0.01908 (17)0.0268 (9)
O230.7355 (4)0.3018 (3)0.01962 (10)0.0348 (6)
N210.4829 (3)0.3447 (3)0.07266 (13)0.0230 (7)
C240.5850 (4)0.3639 (4)0.13359 (15)0.0275 (9)
C2410.7226 (5)0.4842 (4)0.12734 (17)0.0388 (11)
H24A0.80990.45540.09690.058*
H24B0.78180.50100.16790.058*
H24C0.66390.57310.11320.058*
C2420.6742 (5)0.2224 (4)0.15384 (16)0.0345 (10)
H24D0.58520.14610.15640.052*
H24E0.73260.23540.19490.052*
H24F0.76200.19520.12320.052*
C250.4583 (4)0.4172 (4)0.18298 (14)0.0258 (9)
H25A0.52610.43650.22230.031*
H25B0.40470.50930.16870.031*
C260.3114 (4)0.3095 (4)0.19614 (15)0.0238 (9)
H260.36340.23000.22230.029*
N220.1734 (4)0.3780 (3)0.23152 (14)0.0229 (7)
H22N0.146 (4)0.469 (4)0.2289 (14)0.028*
C270.0742 (5)0.3013 (5)0.27007 (16)0.0239 (9)
O270.1022 (3)0.1708 (3)0.28043 (10)0.0337 (7)
C280.0730 (5)0.3785 (4)0.29870 (15)0.0259 (9)
H280.08650.47920.29180.031*
C290.1860 (5)0.3102 (4)0.33360 (16)0.0399 (10)
H29A0.17360.20950.34070.048*
H29B0.28020.36170.35170.048*
C2100.2424 (4)0.2433 (3)0.13444 (14)0.0267 (10)
H21C0.28820.14350.13220.032*
H21D0.11240.23650.13640.032*
C2110.2858 (4)0.3195 (3)0.07325 (15)0.0246 (9)
C2120.1822 (4)0.4611 (3)0.06547 (15)0.0289 (9)
H21E0.18590.51430.10500.043*
H21F0.05930.43950.05350.043*
H21G0.23530.52000.03290.043*
C2130.2268 (5)0.2124 (4)0.02233 (15)0.0297 (9)
H21H0.23450.25840.01870.044*
H21I0.10470.18290.02910.044*
H21J0.30360.12730.02410.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.040 (3)0.028 (2)0.037 (3)0.002 (2)0.003 (2)0.004 (2)
C120.026 (3)0.023 (2)0.030 (3)0.0039 (18)0.001 (2)0.0063 (19)
C130.026 (3)0.020 (2)0.030 (3)0.005 (2)0.002 (2)0.009 (2)
O130.0183 (16)0.0412 (15)0.0399 (16)0.0068 (14)0.0042 (13)0.0083 (12)
N110.022 (2)0.0237 (16)0.025 (2)0.0030 (15)0.0058 (17)0.0015 (15)
C140.021 (2)0.019 (2)0.027 (2)0.0028 (19)0.0062 (19)0.001 (2)
C1410.025 (2)0.024 (2)0.030 (2)0.0001 (17)0.0034 (17)0.005 (2)
C1420.029 (3)0.027 (2)0.038 (2)0.004 (2)0.0021 (18)0.003 (2)
C150.016 (2)0.0180 (19)0.030 (2)0.0024 (18)0.0023 (17)0.005 (2)
C160.025 (2)0.015 (2)0.024 (2)0.0013 (18)0.0035 (17)0.002 (2)
N120.035 (2)0.0128 (16)0.026 (2)0.0007 (16)0.0067 (15)0.003 (2)
C170.024 (2)0.013 (3)0.036 (3)0.001 (2)0.0020 (19)0.006 (3)
O170.0376 (17)0.0171 (17)0.0384 (15)0.0001 (13)0.0071 (12)0.0008 (14)
C180.031 (2)0.019 (2)0.038 (3)0.0008 (18)0.0008 (19)0.003 (2)
C190.032 (2)0.027 (2)0.047 (3)0.000 (2)0.009 (2)0.011 (2)
C1100.025 (3)0.024 (2)0.028 (2)0.003 (2)0.0019 (18)0.0006 (18)
C1110.018 (2)0.025 (2)0.026 (2)0.000 (2)0.0005 (18)0.0031 (19)
C1120.039 (3)0.031 (2)0.032 (2)0.006 (2)0.0103 (19)0.002 (2)
C1130.030 (3)0.044 (3)0.032 (2)0.005 (2)0.0034 (18)0.009 (2)
C210.030 (2)0.035 (2)0.041 (3)0.0057 (19)0.004 (2)0.004 (2)
C220.021 (2)0.027 (2)0.034 (3)0.0027 (19)0.009 (2)0.002 (2)
C230.027 (3)0.018 (2)0.035 (3)0.002 (2)0.002 (2)0.0048 (19)
O230.0189 (17)0.0442 (16)0.0414 (16)0.0068 (14)0.0054 (13)0.0057 (13)
N210.019 (2)0.0218 (18)0.029 (2)0.0010 (14)0.0065 (17)0.0030 (14)
C240.022 (2)0.036 (2)0.024 (2)0.004 (2)0.0042 (19)0.0069 (19)
C2410.025 (3)0.043 (2)0.049 (3)0.005 (2)0.007 (2)0.007 (2)
C2420.027 (2)0.036 (3)0.040 (2)0.013 (2)0.0052 (19)0.003 (2)
C250.025 (2)0.028 (2)0.025 (2)0.001 (2)0.0008 (18)0.0010 (19)
C260.024 (2)0.022 (2)0.025 (2)0.001 (2)0.0038 (18)0.0012 (19)
N220.0227 (19)0.0166 (16)0.0297 (18)0.0032 (18)0.0052 (16)0.0021 (18)
C270.025 (3)0.022 (3)0.025 (2)0.001 (2)0.005 (2)0.005 (2)
O270.0494 (18)0.0176 (16)0.0348 (16)0.0045 (14)0.0093 (12)0.0033 (13)
C280.031 (3)0.022 (2)0.026 (2)0.002 (2)0.005 (2)0.000 (2)
C290.053 (3)0.031 (2)0.037 (2)0.003 (2)0.017 (2)0.004 (2)
C2100.023 (2)0.022 (2)0.036 (2)0.0053 (17)0.0010 (19)0.004 (2)
C2110.022 (3)0.024 (2)0.028 (2)0.000 (2)0.0001 (17)0.001 (2)
C2120.025 (2)0.029 (2)0.032 (2)0.001 (2)0.0006 (18)0.0027 (19)
C2130.026 (2)0.033 (2)0.031 (2)0.0056 (19)0.0042 (18)0.002 (2)
Geometric parameters (Å, º) top
C11—C121.318 (4)C21—C221.315 (4)
C11—H11A0.9500C21—H21A0.9500
C11—H11B0.9500C21—H21B0.9500
C12—C131.497 (5)C22—C231.498 (5)
C12—H120.9500C22—H220.9500
C13—O131.234 (4)C23—O231.238 (4)
C13—N111.374 (4)C23—N211.372 (4)
N11—C141.510 (4)N21—C241.509 (4)
N11—C1111.512 (4)N21—C2111.513 (4)
C14—C151.522 (4)C24—C251.531 (4)
C14—C1411.531 (4)C24—C2421.532 (5)
C14—C1421.538 (5)C24—C2411.535 (5)
C141—H14A0.9800C241—H24A0.9800
C141—H14B0.9800C241—H24B0.9800
C141—H14C0.9800C241—H24C0.9800
C142—H14D0.9800C242—H24D0.9800
C142—H14E0.9800C242—H24E0.9800
C142—H14F0.9800C242—H24F0.9800
C15—C161.526 (4)C25—C261.527 (4)
C15—H15A0.9900C25—H25A0.9900
C15—H15B0.9900C25—H25B0.9900
C16—N121.455 (4)C26—N221.455 (4)
C16—C1101.528 (4)C26—C2101.535 (4)
C16—H161.0000C26—H261.0000
N12—C171.330 (4)N22—C271.337 (4)
N12—H12N0.87 (3)N22—H22N0.87 (3)
C17—O171.239 (4)C27—O271.246 (4)
C17—C181.475 (5)C27—C281.474 (5)
C18—C191.322 (4)C28—C291.315 (4)
C18—H180.9500C28—H280.9500
C19—H19A0.9500C29—H29A0.9500
C19—H19B0.9500C29—H29B0.9500
C110—C1111.538 (5)C210—C2111.532 (4)
C110—H11C0.9900C210—H21C0.9900
C110—H11D0.9900C210—H21D0.9900
C111—C1131.532 (4)C211—C2131.532 (4)
C111—C1121.533 (4)C211—C2121.535 (4)
C112—H11E0.9800C212—H21E0.9800
C112—H11F0.9800C212—H21F0.9800
C112—H11G0.9800C212—H21G0.9800
C113—H11H0.9800C213—H21H0.9800
C113—H11I0.9800C213—H21I0.9800
C113—H11J0.9800C213—H21J0.9800
C12—C11—H11A120.0C22—C21—H21A120.0
C12—C11—H11B120.0C22—C21—H21B120.0
H11A—C11—H11B120.0H21A—C21—H21B120.0
C11—C12—C13121.2 (4)C21—C22—C23121.2 (3)
C11—C12—H12119.4C21—C22—H22119.4
C13—C12—H12119.4C23—C22—H22119.4
O13—C13—N11122.1 (3)O23—C23—N21122.4 (3)
O13—C13—C12118.8 (3)O23—C23—C22118.4 (3)
N11—C13—C12118.9 (4)N21—C23—C22119.0 (3)
C13—N11—C14123.0 (3)C23—N21—C24117.7 (3)
C13—N11—C111117.0 (3)C23—N21—C211122.3 (3)
C14—N11—C111119.4 (3)C24—N21—C211119.6 (3)
N11—C14—C15108.7 (2)N21—C24—C25108.6 (3)
N11—C14—C141111.5 (3)N21—C24—C242110.8 (3)
C15—C14—C141104.9 (2)C25—C24—C242111.2 (3)
N11—C14—C142112.3 (3)N21—C24—C241110.1 (3)
C15—C14—C142109.3 (3)C25—C24—C241105.5 (3)
C141—C14—C142109.9 (2)C242—C24—C241110.5 (3)
C14—C141—H14A109.5C24—C241—H24A109.5
C14—C141—H14B109.5C24—C241—H24B109.5
H14A—C141—H14B109.5H24A—C241—H24B109.5
C14—C141—H14C109.5C24—C241—H24C109.5
H14A—C141—H14C109.5H24A—C241—H24C109.5
H14B—C141—H14C109.5H24B—C241—H24C109.5
C14—C142—H14D109.5C24—C242—H24D109.5
C14—C142—H14E109.5C24—C242—H24E109.5
H14D—C142—H14E109.5H24D—C242—H24E109.5
C14—C142—H14F109.5C24—C242—H24F109.5
H14D—C142—H14F109.5H24D—C242—H24F109.5
H14E—C142—H14F109.5H24E—C242—H24F109.5
C14—C15—C16113.5 (3)C26—C25—C24113.1 (3)
C14—C15—H15A108.9C26—C25—H25A109.0
C16—C15—H15A108.9C24—C25—H25A109.0
C14—C15—H15B108.9C26—C25—H25B109.0
C16—C15—H15B108.9C24—C25—H25B109.0
H15A—C15—H15B107.7H25A—C25—H25B107.8
N12—C16—C15108.6 (3)N22—C26—C25110.5 (3)
N12—C16—C110112.9 (3)N22—C26—C210112.9 (3)
C15—C16—C110110.5 (3)C25—C26—C210109.6 (3)
N12—C16—H16108.3N22—C26—H26107.9
C15—C16—H16108.3C25—C26—H26107.9
C110—C16—H16108.3C210—C26—H26107.9
C17—N12—C16122.3 (3)C27—N22—C26121.0 (3)
C17—N12—H12N117 (2)C27—N22—H22N114 (2)
C16—N12—H12N120 (2)C26—N22—H22N124 (2)
O17—C17—N12123.5 (3)O27—C27—N22122.0 (3)
O17—C17—C18121.9 (4)O27—C27—C28121.6 (3)
N12—C17—C18114.6 (3)N22—C27—C28116.4 (4)
C19—C18—C17122.0 (3)C29—C28—C27121.1 (3)
C19—C18—H18119.0C29—C28—H28119.4
C17—C18—H18119.0C27—C28—H28119.4
C18—C19—H19A120.0C28—C29—H29A120.0
C18—C19—H19B120.0C28—C29—H29B120.0
H19A—C19—H19B120.0H29A—C29—H29B120.0
C16—C110—C111116.8 (3)C211—C210—C26118.4 (3)
C16—C110—H11C108.1C211—C210—H21C107.7
C111—C110—H11C108.1C26—C210—H21C107.7
C16—C110—H11D108.1C211—C210—H21D107.7
C111—C110—H11D108.1C26—C210—H21D107.7
H11C—C110—H11D107.3H21C—C210—H21D107.1
N11—C111—C113110.0 (3)N21—C211—C213111.2 (3)
N11—C111—C112112.5 (3)N21—C211—C210108.3 (2)
C113—C111—C112108.9 (3)C213—C211—C210104.2 (2)
N11—C111—C110108.2 (2)N21—C211—C212111.7 (2)
C113—C111—C110105.3 (3)C213—C211—C212109.8 (3)
C112—C111—C110111.7 (3)C210—C211—C212111.4 (3)
C111—C112—H11E109.5C211—C212—H21E109.5
C111—C112—H11F109.5C211—C212—H21F109.5
H11E—C112—H11F109.5H21E—C212—H21F109.5
C111—C112—H11G109.5C211—C212—H21G109.5
H11E—C112—H11G109.5H21E—C212—H21G109.5
H11F—C112—H11G109.5H21F—C212—H21G109.5
C111—C113—H11H109.5C211—C213—H21H109.5
C111—C113—H11I109.5C211—C213—H21I109.5
H11H—C113—H11I109.5H21H—C213—H21I109.5
C111—C113—H11J109.5C211—C213—H21J109.5
H11H—C113—H11J109.5H21H—C213—H21J109.5
H11I—C113—H11J109.5H21I—C213—H21J109.5
C11—C12—C13—O1311.0 (5)C21—C22—C23—O2323.7 (5)
C11—C12—C13—N11174.2 (3)C21—C22—C23—N21161.1 (3)
O13—C13—N11—C14151.1 (3)O23—C23—N21—C2419.9 (4)
C12—C13—N11—C1434.2 (4)C22—C23—N21—C24155.1 (3)
O13—C13—N11—C11120.0 (5)O23—C23—N21—C211152.6 (3)
C12—C13—N11—C111154.7 (3)C22—C23—N21—C21132.4 (4)
C13—N11—C14—C15147.4 (3)C23—N21—C24—C25163.3 (3)
C111—N11—C14—C1523.4 (4)C211—N21—C24—C2524.0 (4)
C13—N11—C14—C14132.3 (4)C23—N21—C24—C24274.4 (4)
C111—N11—C14—C141138.5 (3)C211—N21—C24—C24298.4 (3)
C13—N11—C14—C14291.5 (4)C23—N21—C24—C24148.2 (4)
C111—N11—C14—C14297.6 (3)C211—N21—C24—C241139.0 (3)
N11—C14—C15—C1661.2 (3)N21—C24—C25—C2662.6 (3)
C141—C14—C15—C16179.5 (3)C242—C24—C25—C2659.6 (4)
C142—C14—C15—C1661.8 (3)C241—C24—C25—C26179.4 (3)
C14—C15—C16—N12163.1 (3)C24—C25—C26—N22166.5 (3)
C14—C15—C16—C11038.8 (4)C24—C25—C26—C21041.5 (4)
C15—C16—N12—C17166.6 (3)C25—C26—N22—C27151.7 (3)
C110—C16—N12—C1770.6 (4)C210—C26—N22—C2785.2 (4)
C16—N12—C17—O171.1 (5)C26—N22—C27—O274.6 (5)
C16—N12—C17—C18179.6 (3)C26—N22—C27—C28174.1 (3)
O17—C17—C18—C197.7 (5)O27—C27—C28—C293.8 (5)
N12—C17—C18—C19170.8 (3)N22—C27—C28—C29174.9 (3)
N12—C16—C110—C111101.7 (3)N22—C26—C210—C211106.8 (3)
C15—C16—C110—C11120.1 (4)C25—C26—C210—C21116.8 (4)
C13—N11—C111—C11343.7 (4)C23—N21—C211—C21329.6 (4)
C14—N11—C111—C113144.8 (3)C24—N21—C211—C213142.8 (3)
C13—N11—C111—C11277.8 (4)C23—N21—C211—C210143.5 (3)
C14—N11—C111—C11293.6 (3)C24—N21—C211—C21028.9 (4)
C13—N11—C111—C110158.3 (3)C23—N21—C211—C21293.4 (3)
C14—N11—C111—C11030.3 (4)C24—N21—C211—C21294.2 (3)
C16—C110—C111—N1154.3 (4)C26—C210—C211—N2151.8 (4)
C16—C110—C111—C113171.9 (3)C26—C210—C211—C213170.3 (3)
C16—C110—C111—C11270.1 (4)C26—C210—C211—C21271.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22N···O170.87 (3)2.02 (3)2.888 (4)171 (3)
N12—H12N···O27i0.87 (3)1.98 (3)2.841 (4)177 (3)
C15—H15B···O13ii0.992.673.613 (4)159
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H24N2O2
Mr264.36
Crystal system, space groupMonoclinic, P21
Temperature (K)91
a, b, c (Å)7.5810 (4), 9.2635 (4), 21.4193 (9)
β (°) 91.612 (2)
V3)1503.61 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.65 × 0.24 × 0.14
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.690, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
9141, 2252, 2169
Rint0.040
θmax (°)18.6
(sin θ/λ)max1)0.448
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 1.12
No. of reflections2252
No. of parameters357
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.10, 0.12

Computer programs: APEX2 (Bruker 2009), APEX2 and SAINT (Bruker 2009), SAINT (Bruker 2009), SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22N···O170.87 (3)2.02 (3)2.888 (4)171 (3)
N12—H12N···O27i0.87 (3)1.98 (3)2.841 (4)177 (3)
C15—H15B···O13ii0.992.673.613 (4)159.3
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCygler, M. (1981). Acta Cryst. B37, 1771–1773.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCygler, M., Dobrynin, K. & Perrin, M. (1980). Acta Cryst. B36, 2478–2480.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCygler, M., Markowicz, T., Skolimowski, J. & Skowronski, R. (1980). J. Mol. Struct. 68, 161–171.  CrossRef CAS Google Scholar
First citationCygler, M., Skarżyński, T., Skolimowski, J. & Thozet, A. (1980). Acta Cryst. B36, 2481–2483.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDuskova, J., Labsky, J., Dusek, M. & Hasek, J. (2006). Acta Cryst. E62, o811–o813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsui, K., Kurumada, T., Ohta, N., Watanabe, I., Murayama, K. & Morimura, S. (1972). Ger. Offen. DE2040975B2.  Google Scholar
First citationMurayama, K. & Morimura, S. (1971). Ger. Offen. DE2040983A.  Google Scholar
First citationQiu, X., Zhao, H. & Lan, M. (2009). J. Organomet. Chem. 694, 3958–3964.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3024-o3025
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds