organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3031-o3032

(6aS*,6bS*,11R*,11aR*)-6-(2-Furyl­methyl)-5,12-dioxo-5,6,6a,6b,7,11,11a,12-octa­hydro­furo[3′,2′:5,6]isoindolo[2,1-a]quinazoline-11-carb­­oxy­lic acid

aDepartment of Organic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya Street, Lviv 79005, Ukraine, bOrganic Chemistry Department, Russian People's Friendship University, Miklukho-Maklaya Street 6, Moscow, 117198, Russian Federation, and cX-ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: obushak@in.lviv.ua

(Received 13 October 2011; accepted 18 October 2011; online 29 October 2011)

The title compound, C23H18N2O6, is the product of an intra­molecular thermal cyclo­addition within 1-malein-2-[(E)-2-(2-fur­yl)vin­yl]-4-oxo-3,4-dihydro­quinazoline. The mol­ecule comprises a previously unknown fused penta­cyclic system containing two five-membered rings (2-pyrrolidinone and furan) and three six-membered rings (benzene, 2,3-dihydro-4-pyrimidinone and dihydro­cyclo­hexa­ne). The central five-membered pyrrolidinone ring has the usual envelope conformation. The six-membered dihydro­pyrimidinone and dihydro­cyclo­hexane rings adopt a half-boat and a half-chair conformation, respectively. The dihedral angle between the planes of the terminal benzene and furan rings is 45.99 (7)°. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. Weak C—H⋯O hydrogen bonds consolidate further the crystal packing, which exhibits ππ inter­actions, with a short distance of 3.556 (3) Å between the centroids of benzene rings of neighbouring mol­ecules.

Related literature

For 2-vinyl­furans as dienes, see: Kotsuki et al. (1981[Kotsuki, H., Kondo, A., Nishizawa, H., Ochi, M. & Matsuoka, K. (1981). J. Org. Chem. 46, 5454-5455.]); Keil et al. (1990[Keil, J.-M., Kaempchen, T. & Seitz, G. (1990). Tetrahedron Lett. 31, 4581-4584.]); Kusurkar & Bhosale (1990[Kusurkar, R. S. & Bhosale, D. K. (1990). Synth. Commun. 20, 101-109.]); Anisimova et al. (2006[Anisimova, N. A., Berestovitskaya, I. M., Berkova, G. A. & Ladygin, V. V. (2006). Russ. J. Org. Chem. 42, 1738-1740.]). For the intra­molecular Diels–Alder reaction for furan (IMDAF), see: Vogel et al. (1999[Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521-13642.]); Zubkov et al. (2005[Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639-669.], 2009[Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789-3803.], 2010[Zubkov, F. I., Galeev, T. R., Nikitina, E. V., Lazenkova, I. V., Zaytsev, V. P. & Varlamov, A. V. (2010). Synlett, pp. 2063-2066.]). For related compounds, see: Chou & Tsai (1992[Chou, T.-S. & Tsai, C.-Y. (1992). Heterocycles, 34, 663-666.]); Chou et al. (1997[Chou, T.-S., Tsai, C.-Y. & Lee, S.-J. (1997). J. Chin. Chem. Soc. 44, 299-308.]); Sun & Murray (1999[Sun, S. & Murray, W. V. (1999). J. Org. Chem. 64, 5941-5945.]); Ohno et al. (2005[Ohno, H., Miyamura, K., Mizutani, T., Kadoh, Y., Takeoka, Y., Hamaguchi, H. & Tanaka, T. (2005). Chem. Eur. J. 11, 3728-3741.]); Patre et al. (2007[Patre, R. E., Gawas, S., Sen, S., Parameswaran, P. S. & Tilve, S. G. (2007). Tetrahedron Lett. 48, 3517-3520.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18N2O6

  • Mr = 418.39

  • Monoclinic, P 21 /n

  • a = 8.2364 (5) Å

  • b = 16.9882 (10) Å

  • c = 13.1568 (8) Å

  • β = 99.102 (1)°

  • V = 1817.74 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.980

  • 21001 measured reflections

  • 5293 independent reflections

  • 4139 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.160

  • S = 1.00

  • 5293 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1i 0.93 1.75 2.671 (2) 174
C2—H2⋯O3ii 0.95 2.42 3.326 (2) 160
C3—H3⋯O3iii 0.95 2.56 3.384 (2) 146
C7—H7B⋯O4iv 0.99 2.54 3.455 (2) 155
C11A—H11A⋯O1v 1.00 2.38 3.325 (2) 157
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+2, -y+1, -z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Currently, there are only a few reports concerning the [4 + 2] cycloaddition of 2-vinylfurans with dienophiles (Kotsuki et al., 1981; Keil et al., 1990; Kusurkar & Bhosale, 1990; Anisimova et al., 2006). In the present work, within the scope of our investigations on the intramolecular Diels-Alder reaction of furan (IMDAF) (Vogel et al., 1999; Zubkov et al., 2005, 2009, 2010), we demonstrate the possibility of intramolecular thermal cycloaddition within 1-malein-2-[(E)-2-(2-furyl)vinyl]-4-oxo-3,4-dihydroquinazoline. The latter is an intermediate of a reaction of 2-[(E)-2-(2-furyl)vinyl]-2,3-dihydroquinazolin-4-one with maleic anhydride (Figure 1). The reaction product contains a previously unknown pentacycle bearing four asymmetrical centers. The main structural fragments of the new pentacycle are quinazoline and furo[2,3-f]isoindole (Chou & Tsai, 1992; Chou et al., 1997; Sun & Murray, 1999; Ohno et al., 2005; Patre et al., 2007). The structure of the final product - 6-(2-furylmethyl)-5,12-dioxo-5,6,6a,6 b,7,11,11a,12-octahydrofuro[3',2':5,6]isoindolo[2,1-a]quinazoline-11-carboxylic acid, C23H18N2O6, (I) was unambiguously established by X-ray diffraction study.

Molecule of (I) comprises a fused pentacyclic system containing two five-membered rings (2-pyrrolidinone and furan) and three six-membered rings (benzene, 2,3-dihydro-4-pyrimidinone and dihydrocyclohexane) (Figure 2). The central five-membered pyrrolidinone ring has usual envelope conformation (the C6B carbon atom is out of the plane through the other atoms of the ring by 0.477 (2) Å)), and the central six-membered dihydropyrimidinone and dihydrocyclohexane rings adopt the nonsymmetrical half-boat (the N6 nitrogen and C6A carbon atoms are out of the plane through the other atoms of the ring by 0.265 (3) and 0.626 (3) Å, respectively) and nonsymmetrical half-chair (the C6B and C11A carbon atoms are out of the plane through the other atoms of the ring by -0.555 (3) and 0.281 (3) Å, respectively) conformations, respectively. The dihedral angle between the planes of the end-cutting benzene and furan rings is 45.99 (7)°.

The furylmethyl ligand and carboxylic acid substituent at the C11 atom arrange from different sides of the main pentacyclic framework. Apparently, such disposition is explained by the fact that, in the crystal, the molecules of (I) form the centrosymmerical dimers through the intermolecular O4—H4O···O1i hydrogen bonding interactions (Table 1). Furthermore, due to the steric reasons within the dimers, the nitrogen N6 atom adopts a trigonal-pyramidal geometry (sum of the bond angles is 357.5°), while the nitrogen N13 atom has a trigonal-planar geometry (sum of the bond angles is 360.0°). Weak intermolecular C—H···O hydrogen bonds consolidate further the crystal packing, which exhibits ππ interactions with the short distance of 3.556 (3) Å between the centroids of benzene rings from the neighbouring molecules [Cg···Cgi; symmetry code (i) 1 - x, 1 - y, -z].

The molecule of (I) possesses four asymmetric centers at the C6A, C6B, C11 and C11A carbon atoms and can have potentially numerous diastereomers. The crystal of (I) is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-6aS*,6 bS*,11R*,11aR*.

Related literature top

For 2-vinylfurans as dienes, see: Kotsuki et al. (1981); Keil et al. (1990); Kusurkar & Bhosale (1990); Anisimova et al. (2006). For the intramolecular Diels–Alder reaction for furan (IMDAF), see: Vogel et al. (1999); Zubkov et al. (2005, 2009, 2010). For related compounds, see: Chou & Tsai (1992); Chou et al. (1997); Sun & Murray (1999); Ohno et al. (2005); Patre et al. (2007).

Experimental top

A mixture of the initial 3-(2-furylmethyl)-2-[(E)-2-(2-furyl)vinyl]-2,3-dihydroquinazolin-4(1H)-one (0.5 g, 1.6 mmol) and maleic anhydride (0.17 g, 1.7 mmol) was refluxed for 8 h in toluene (10 ml). At the end of the reaction the resulting mixture was cooled, and formed brown precipitate was filtered off, washed with benzene(2x10 ml) and ether (2x10 ml). Further crystallization from an ethanol-DMF mixture gives the corresponding acid (0.5 g, 1.2 mmol) as orange prism. Yield is 77%. The single-crystal of the product was obtained by slow crystallization from an ethanol-ethyl acetate mixture. M.p. = 499–500 K. IR (KBr), ν/cm-1: 1630, 1727 (NCO, CO2H). 1H NMR (600 MHz, DMSO-d6, 293 K): δ = 12.7 (br.s,1H, CO2H), 8.24 (d, 1H,H4, J4,3 = 7.8), 7.93 (d, 1H, H1, J1,2 = 7.8), 7.60 (t, 1H, H2, J1,2 = J2,3 = 7.8), 7.57 (dd, 1H, H5', J4',5'= 1.8, J3',5' = 0.8), 7.54 (d, 1H, H9, J9,10 = 0.9), 7.25 (t, 1H, H3, J2,3 = J3,4 = 7.8), 6.44 (d, 1H, H10, J9,10= 0.9), 6.38 (dd, 1H, H4', J3',4' = 3.2, J4',5' = 1.8), 6.32 (d, 1H, H3', J3',4' = 3.2), 5.53 (d, 1H, H6A, J6 A,6B = 8.2), 5.01 (d, 1H, NCH2, JH14A,H14B = 16.9), 4.73 (d,1H, NCH2, JH14A,H14B = 16.9), 3.83 (d, 1H, H11, J11,11 A = 5.0), 3.29 (m, 1H, H6B), 3.16 (dd, 1H, H7A, J7 A,7B = 15.6, J7 A,6B = 4.6), 3.04 (dd, 1H, H11A, J11 A,6B = 12.4, J11,11 A = 5.0), 2.70 (dd, 1H, H7B, J7 A,7B = 15.6, J7B,6B = 11.5). Mass spectrum (EI—MS, 70 eV) m/z(Ir, (%)): 418 [M+] (100), 374 (22), 322 (18), 276 (41), 236 (13), 227 (16), 185 (12), 147 (13), 119 (14), 91 (37), 81 (75), 53 (12). Anal. Calcd. for C23H18N2O6: C, 66.02; H, 4.34; N, 6.70. Found: C, 66.12; H, 4.04; N, 6.83.

Refinement top

The hydroxyl hydrogen atom was localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C–H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction of 2-[(E)-2-(2-furyl)vinyl]-2,3-dihydroquinazolin-4-one with maleic anhydride.
[Figure 2] Fig. 2. Molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level.
(6aS*,6bS*,11R*,11aR*)-6-(2-Furylmethyl)-5,12- dioxo-5,6,6a,6b,7,11,11a,12-octahydrofuro[3',2':5,6]isoindolo[2,1- a]quinazoline-11-carboxylic acid top
Crystal data top
C23H18N2O6F(000) = 872
Mr = 418.39Dx = 1.529 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6904 reflections
a = 8.2364 (5) Åθ = 2.4–30.0°
b = 16.9882 (10) ŵ = 0.11 mm1
c = 13.1568 (8) ÅT = 100 K
β = 99.102 (1)°Prism, orange
V = 1817.74 (19) Å30.30 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
5293 independent reflections
Radiation source: fine-focus sealed tube4139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.967, Tmax = 0.980k = 2323
21001 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: difference Fourier map
wR(F2) = 0.160H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.08P)2 + 1.9P]
where P = (Fo2 + 2Fc2)/3
5293 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C23H18N2O6V = 1817.74 (19) Å3
Mr = 418.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2364 (5) ŵ = 0.11 mm1
b = 16.9882 (10) ÅT = 100 K
c = 13.1568 (8) Å0.30 × 0.20 × 0.18 mm
β = 99.102 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
5293 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4139 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.980Rint = 0.027
21001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
5293 reflectionsΔρmin = 0.34 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77116 (15)0.37826 (7)0.24161 (9)0.0235 (3)
O20.73217 (17)0.53678 (7)0.48118 (10)0.0286 (3)
O30.47571 (15)0.62107 (7)0.02374 (9)0.0245 (3)
O40.31904 (17)0.72270 (7)0.08729 (10)0.0284 (3)
H4O0.28270.68610.13830.043*
O50.82503 (15)0.69632 (7)0.03174 (9)0.0237 (3)
C11.0826 (2)0.57749 (10)0.10046 (13)0.0221 (3)
H11.09010.63000.07690.027*
C21.2040 (2)0.52240 (10)0.08887 (13)0.0237 (3)
H21.29420.53780.05650.028*
C31.1958 (2)0.44550 (10)0.12353 (13)0.0248 (3)
H31.28110.40920.11650.030*
C41.0627 (2)0.42198 (10)0.16832 (13)0.0231 (3)
H41.05570.36930.19140.028*
C4A0.93842 (19)0.47584 (9)0.17967 (12)0.0197 (3)
C50.7966 (2)0.44955 (9)0.22637 (12)0.0203 (3)
N60.69629 (17)0.50537 (8)0.25528 (10)0.0198 (3)
C6A0.72967 (19)0.59004 (9)0.24741 (12)0.0188 (3)
H6A0.79250.61040.31350.023*
C6B0.57091 (19)0.63798 (9)0.21574 (12)0.0192 (3)
H6B0.49180.60420.16940.023*
C70.4786 (2)0.67373 (10)0.29657 (13)0.0224 (3)
H7A0.42840.63220.33430.027*
H7B0.55290.70600.34650.027*
C7A0.3497 (2)0.72356 (9)0.23479 (13)0.0220 (3)
O80.20912 (15)0.74143 (7)0.27305 (10)0.0246 (3)
C90.1130 (2)0.78350 (10)0.19758 (14)0.0257 (3)
H90.00710.80360.20300.031*
C100.1885 (2)0.79273 (10)0.11445 (14)0.0240 (3)
H100.14710.81990.05260.029*
C10A0.3445 (2)0.75302 (9)0.13854 (13)0.0208 (3)
C110.4827 (2)0.74087 (9)0.07672 (12)0.0202 (3)
H110.51730.79300.05220.024*
C11A0.62601 (19)0.70466 (9)0.15030 (12)0.0189 (3)
H11A0.67350.74720.19860.023*
C120.76530 (19)0.67005 (9)0.10328 (12)0.0196 (3)
N130.82043 (16)0.60449 (8)0.16182 (10)0.0196 (3)
C13A0.95024 (19)0.55390 (9)0.14728 (12)0.0193 (3)
C140.5826 (2)0.48033 (9)0.32540 (13)0.0220 (3)
H14A0.52860.43040.30030.026*
H14B0.49610.52070.32610.026*
C150.6729 (2)0.46908 (10)0.43133 (13)0.0220 (3)
C160.7223 (2)0.40551 (10)0.48999 (13)0.0244 (3)
H160.69800.35200.47310.029*
C170.8185 (2)0.43469 (12)0.58253 (14)0.0290 (4)
H170.87000.40440.63930.035*
C180.8216 (3)0.51364 (12)0.57333 (14)0.0325 (4)
H180.87770.54840.62360.039*
C190.4283 (2)0.68777 (10)0.01577 (12)0.0212 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0327 (6)0.0167 (5)0.0209 (6)0.0006 (4)0.0031 (5)0.0008 (4)
O20.0387 (7)0.0233 (6)0.0229 (6)0.0022 (5)0.0021 (5)0.0022 (5)
O30.0280 (6)0.0195 (6)0.0251 (6)0.0020 (4)0.0017 (5)0.0018 (4)
O40.0352 (7)0.0225 (6)0.0241 (6)0.0061 (5)0.0060 (5)0.0028 (5)
O50.0253 (6)0.0211 (6)0.0250 (6)0.0016 (4)0.0055 (5)0.0028 (4)
C10.0214 (7)0.0221 (7)0.0222 (7)0.0022 (6)0.0015 (6)0.0004 (6)
C20.0204 (7)0.0285 (8)0.0217 (8)0.0005 (6)0.0017 (6)0.0034 (6)
C30.0248 (8)0.0270 (8)0.0217 (7)0.0044 (6)0.0011 (6)0.0023 (6)
C40.0289 (8)0.0198 (7)0.0199 (7)0.0044 (6)0.0014 (6)0.0005 (6)
C4A0.0232 (7)0.0184 (7)0.0169 (7)0.0007 (5)0.0017 (5)0.0006 (5)
C50.0242 (7)0.0182 (7)0.0174 (7)0.0001 (5)0.0006 (6)0.0011 (5)
N60.0230 (6)0.0166 (6)0.0198 (6)0.0007 (5)0.0032 (5)0.0011 (5)
C6A0.0212 (7)0.0160 (7)0.0188 (7)0.0010 (5)0.0016 (5)0.0008 (5)
C6B0.0203 (7)0.0182 (7)0.0188 (7)0.0005 (5)0.0017 (5)0.0022 (5)
C70.0239 (7)0.0225 (7)0.0212 (7)0.0011 (6)0.0044 (6)0.0011 (6)
C7A0.0221 (7)0.0187 (7)0.0251 (8)0.0000 (5)0.0037 (6)0.0031 (6)
O80.0239 (6)0.0223 (6)0.0284 (6)0.0025 (4)0.0066 (5)0.0004 (5)
C90.0243 (8)0.0202 (7)0.0321 (9)0.0026 (6)0.0030 (6)0.0017 (6)
C100.0237 (7)0.0196 (7)0.0279 (8)0.0020 (6)0.0009 (6)0.0016 (6)
C10A0.0225 (7)0.0159 (7)0.0235 (8)0.0001 (5)0.0019 (6)0.0020 (5)
C110.0224 (7)0.0166 (7)0.0210 (7)0.0006 (5)0.0017 (6)0.0007 (5)
C11A0.0201 (7)0.0165 (6)0.0195 (7)0.0015 (5)0.0010 (5)0.0002 (5)
C120.0213 (7)0.0163 (6)0.0203 (7)0.0021 (5)0.0011 (5)0.0009 (5)
N130.0200 (6)0.0172 (6)0.0216 (6)0.0008 (5)0.0034 (5)0.0019 (5)
C13A0.0192 (7)0.0198 (7)0.0181 (7)0.0007 (5)0.0002 (5)0.0001 (5)
C140.0211 (7)0.0189 (7)0.0264 (8)0.0011 (5)0.0044 (6)0.0032 (6)
C150.0240 (7)0.0207 (7)0.0221 (7)0.0005 (6)0.0056 (6)0.0005 (6)
C160.0243 (8)0.0243 (8)0.0252 (8)0.0001 (6)0.0058 (6)0.0032 (6)
C170.0288 (8)0.0358 (9)0.0229 (8)0.0001 (7)0.0051 (7)0.0046 (7)
C180.0394 (10)0.0372 (10)0.0201 (8)0.0038 (8)0.0019 (7)0.0021 (7)
C190.0218 (7)0.0207 (7)0.0209 (7)0.0002 (6)0.0026 (6)0.0008 (6)
Geometric parameters (Å, º) top
O1—C51.2507 (19)C7—C7A1.494 (2)
O2—C181.373 (2)C7—H7A0.9900
O2—C151.375 (2)C7—H7B0.9900
O3—C191.209 (2)C7A—C10A1.356 (2)
O4—C191.334 (2)C7A—O81.368 (2)
O4—H4O0.9287O8—C91.369 (2)
O5—C121.214 (2)C9—C101.350 (3)
C1—C13A1.393 (2)C9—H90.9500
C1—C21.395 (2)C10—C10A1.442 (2)
C1—H10.9500C10—H100.9500
C2—C31.389 (2)C10A—C111.514 (2)
C2—H20.9500C11—C191.524 (2)
C3—C41.383 (2)C11—C11A1.532 (2)
C3—H30.9500C11—H111.0000
C4—C4A1.398 (2)C11A—C121.506 (2)
C4—H40.9500C11A—H11A1.0000
C4A—C13A1.401 (2)C12—N131.389 (2)
C4A—C51.473 (2)N13—C13A1.408 (2)
C5—N61.351 (2)C14—C151.485 (2)
N6—C6A1.471 (2)C14—H14A0.9900
N6—C141.477 (2)C14—H14B0.9900
C6A—N131.467 (2)C15—C161.352 (2)
C6A—C6B1.541 (2)C16—C171.432 (3)
C6A—H6A1.0000C16—H160.9500
C6B—C71.527 (2)C17—C181.347 (3)
C6B—C11A1.534 (2)C17—H170.9500
C6B—H6B1.0000C18—H180.9500
C18—O2—C15106.38 (14)C9—C10—C10A106.03 (15)
C19—O4—H4O108.4C9—C10—H10127.0
C13A—C1—C2118.66 (15)C10A—C10—H10127.0
C13A—C1—H1120.7C7A—C10A—C10105.85 (15)
C2—C1—H1120.7C7A—C10A—C11122.43 (15)
C3—C2—C1121.48 (16)C10—C10A—C11131.71 (15)
C3—C2—H2119.3C10A—C11—C19111.01 (13)
C1—C2—H2119.3C10A—C11—C11A106.54 (13)
C4—C3—C2119.64 (15)C19—C11—C11A111.52 (13)
C4—C3—H3120.2C10A—C11—H11109.2
C2—C3—H3120.2C19—C11—H11109.2
C3—C4—C4A119.95 (15)C11A—C11—H11109.2
C3—C4—H4120.0C12—C11A—C11117.25 (13)
C4A—C4—H4120.0C12—C11A—C6B104.73 (12)
C4—C4A—C13A119.98 (15)C11—C11A—C6B112.60 (13)
C4—C4A—C5119.23 (14)C12—C11A—H11A107.3
C13A—C4A—C5120.79 (14)C11—C11A—H11A107.3
O1—C5—N6120.60 (15)C6B—C11A—H11A107.3
O1—C5—C4A121.65 (15)O5—C12—N13126.00 (15)
N6—C5—C4A117.73 (14)O5—C12—C11A127.11 (14)
C5—N6—C6A122.48 (14)N13—C12—C11A106.78 (13)
C5—N6—C14116.74 (13)C12—N13—C13A127.06 (14)
C6A—N6—C14118.00 (13)C12—N13—C6A113.46 (13)
N13—C6A—N6109.94 (12)C13A—N13—C6A119.47 (13)
N13—C6A—C6B102.57 (12)C1—C13A—C4A120.24 (15)
N6—C6A—C6B112.07 (13)C1—C13A—N13123.27 (14)
N13—C6A—H6A110.7C4A—C13A—N13116.46 (14)
N6—C6A—H6A110.7N6—C14—C15110.51 (13)
C6B—C6A—H6A110.7N6—C14—H14A109.5
C7—C6B—C11A108.73 (13)C15—C14—H14A109.5
C7—C6B—C6A121.09 (13)N6—C14—H14B109.5
C11A—C6B—C6A103.19 (12)C15—C14—H14B109.5
C7—C6B—H6B107.7H14A—C14—H14B108.1
C11A—C6B—H6B107.7C16—C15—O2110.11 (15)
C6A—C6B—H6B107.7C16—C15—C14134.38 (16)
C7A—C7—C6B103.64 (13)O2—C15—C14115.31 (14)
C7A—C7—H7A111.0C15—C16—C17106.55 (16)
C6B—C7—H7A111.0C15—C16—H16126.7
C7A—C7—H7B111.0C17—C16—H16126.7
C6B—C7—H7B111.0C18—C17—C16106.50 (16)
H7A—C7—H7B109.0C18—C17—H17126.8
C10A—C7A—O8111.01 (15)C16—C17—H17126.8
C10A—C7A—C7129.18 (15)C17—C18—O2110.46 (16)
O8—C7A—C7119.72 (15)C17—C18—H18124.8
C7A—O8—C9105.95 (13)O2—C18—H18124.8
C10—C9—O8111.16 (15)O3—C19—O4123.18 (15)
C10—C9—H9124.4O3—C19—C11124.47 (15)
O8—C9—H9124.4O4—C19—C11112.35 (14)
C13A—C1—C2—C30.5 (2)C19—C11—C11A—C6B76.15 (17)
C1—C2—C3—C41.6 (3)C7—C6B—C11A—C12158.92 (12)
C2—C3—C4—C4A0.8 (2)C6A—C6B—C11A—C1229.17 (15)
C3—C4—C4A—C13A1.1 (2)C7—C6B—C11A—C1172.59 (16)
C3—C4—C4A—C5179.25 (15)C6A—C6B—C11A—C11157.66 (13)
C4—C4A—C5—O111.2 (2)C11—C11A—C12—O539.4 (2)
C13A—C4A—C5—O1169.16 (15)C6B—C11A—C12—O5165.06 (16)
C4—C4A—C5—N6166.94 (14)C11—C11A—C12—N13144.36 (13)
C13A—C4A—C5—N612.7 (2)C6B—C11A—C12—N1318.74 (16)
O1—C5—N6—C6A174.40 (14)O5—C12—N13—C13A3.1 (3)
C4A—C5—N6—C6A3.8 (2)C11A—C12—N13—C13A179.33 (14)
O1—C5—N6—C1413.7 (2)O5—C12—N13—C6A176.28 (15)
C4A—C5—N6—C14164.46 (13)C11A—C12—N13—C6A0.03 (17)
C5—N6—C6A—N1329.51 (19)N6—C6A—N13—C12137.81 (13)
C14—N6—C6A—N13170.02 (13)C6B—C6A—N13—C1218.44 (16)
C5—N6—C6A—C6B142.89 (15)N6—C6A—N13—C13A42.78 (18)
C14—N6—C6A—C6B56.63 (17)C6B—C6A—N13—C13A162.15 (13)
N13—C6A—C6B—C7150.21 (14)C2—C1—C13A—C4A1.4 (2)
N6—C6A—C6B—C791.92 (17)C2—C1—C13A—N13179.33 (15)
N13—C6A—C6B—C11A28.44 (15)C4—C4A—C13A—C12.2 (2)
N6—C6A—C6B—C11A146.31 (13)C5—C4A—C13A—C1178.11 (14)
C11A—C6B—C7—C7A53.19 (16)C4—C4A—C13A—N13179.72 (14)
C6A—C6B—C7—C7A172.26 (13)C5—C4A—C13A—N130.1 (2)
C6B—C7—C7A—C10A20.2 (2)C12—N13—C13A—C126.6 (2)
C6B—C7—C7A—O8156.02 (14)C6A—N13—C13A—C1152.68 (15)
C10A—C7A—O8—C90.07 (18)C12—N13—C13A—C4A151.33 (15)
C7—C7A—O8—C9176.82 (14)C6A—N13—C13A—C4A29.3 (2)
C7A—O8—C9—C100.28 (19)C5—N6—C14—C1574.64 (18)
O8—C9—C10—C10A0.37 (19)C6A—N6—C14—C1586.95 (16)
O8—C7A—C10A—C100.14 (18)C18—O2—C15—C160.29 (19)
C7—C7A—C10A—C10176.67 (16)C18—O2—C15—C14175.39 (15)
O8—C7A—C10A—C11178.89 (14)N6—C14—C15—C16105.4 (2)
C7—C7A—C10A—C112.4 (3)N6—C14—C15—O268.88 (18)
C9—C10—C10A—C7A0.31 (19)O2—C15—C16—C170.04 (19)
C9—C10—C10A—C11178.60 (16)C14—C15—C16—C17174.57 (18)
C7A—C10A—C11—C19112.13 (17)C15—C16—C17—C180.4 (2)
C10—C10A—C11—C1966.6 (2)C16—C17—C18—O20.6 (2)
C7A—C10A—C11—C11A9.5 (2)C15—O2—C18—C170.5 (2)
C10—C10A—C11—C11A171.78 (16)C10A—C11—C19—O3109.14 (18)
C10A—C11—C11A—C12166.74 (13)C11A—C11—C19—O39.5 (2)
C19—C11—C11A—C1245.47 (18)C10A—C11—C19—O469.78 (18)
C10A—C11—C11A—C6B45.13 (17)C11A—C11—C19—O4171.58 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.931.752.671 (2)174
C2—H2···O3ii0.952.423.326 (2)160
C3—H3···O3iii0.952.563.384 (2)146
C7—H7B···O4iv0.992.543.455 (2)155
C11A—H11A···O1v1.002.383.325 (2)157
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+2, y+1, z; (iv) x+1/2, y+3/2, z+1/2; (v) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H18N2O6
Mr418.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.2364 (5), 16.9882 (10), 13.1568 (8)
β (°) 99.102 (1)
V3)1817.74 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.967, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
21001, 5293, 4139
Rint0.027
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.160, 1.00
No. of reflections5293
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.931.752.671 (2)174
C2—H2···O3ii0.952.423.326 (2)160
C3—H3···O3iii0.952.563.384 (2)146
C7—H7B···O4iv0.992.543.455 (2)155
C11A—H11A···O1v1.002.383.325 (2)157
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+2, y+1, z; (iv) x+1/2, y+3/2, z+1/2; (v) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Russian Foundation for Basic Research for the financial support of this work (grant No. 11-03-90416-Ukraine).

References

First citationAnisimova, N. A., Berestovitskaya, I. M., Berkova, G. A. & Ladygin, V. V. (2006). Russ. J. Org. Chem. 42, 1738–1740.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChou, T.-S. & Tsai, C.-Y. (1992). Heterocycles, 34, 663–666.  CrossRef CAS Google Scholar
First citationChou, T.-S., Tsai, C.-Y. & Lee, S.-J. (1997). J. Chin. Chem. Soc. 44, 299–308.  CAS Google Scholar
First citationKeil, J.-M., Kaempchen, T. & Seitz, G. (1990). Tetrahedron Lett. 31, 4581–4584.  CrossRef CAS Web of Science Google Scholar
First citationKotsuki, H., Kondo, A., Nishizawa, H., Ochi, M. & Matsuoka, K. (1981). J. Org. Chem. 46, 5454–5455.  CrossRef CAS Web of Science Google Scholar
First citationKusurkar, R. S. & Bhosale, D. K. (1990). Synth. Commun. 20, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationOhno, H., Miyamura, K., Mizutani, T., Kadoh, Y., Takeoka, Y., Hamaguchi, H. & Tanaka, T. (2005). Chem. Eur. J. 11, 3728–3741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatre, R. E., Gawas, S., Sen, S., Parameswaran, P. S. & Tilve, S. G. (2007). Tetrahedron Lett. 48, 3517–3520.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S. & Murray, W. V. (1999). J. Org. Chem. 64, 5941–5945.  Web of Science CrossRef CAS Google Scholar
First citationVogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521–13642.  Web of Science CrossRef CAS Google Scholar
First citationZubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789–3803.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Galeev, T. R., Nikitina, E. V., Lazenkova, I. V., Zaytsev, V. P. & Varlamov, A. V. (2010). Synlett, pp. 2063–2066.  Web of Science CrossRef Google Scholar
First citationZubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3031-o3032
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds