organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-[4-(di­methyl­amino)­phen­yl]-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile

aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 250059, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 13 October 2011; accepted 21 October 2011; online 29 October 2011)

In the title mol­ecule, C18H19N3O2, the fused cyclo­hexenone and pyran rings adopt sofa conformations. Inter­molecular N—H⋯N and N—H⋯O hydrogen bonds link mol­ecules into corrugated layers parallel to the bc plane.

Related literature

For the crystal structures of related compounds, see: Kong et al. (2011[Kong, L., Ju, X., Qiao, Y., Zhang, J. & Gao, Z. (2011). Acta Cryst. E67. In the press.]); Wang (2011[Wang, X. (2011). Acta Cryst. E67, o832.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O2

  • Mr = 309.36

  • Monoclinic, C 2/c

  • a = 25.021 (3) Å

  • b = 8.8724 (8) Å

  • c = 16.3827 (16) Å

  • β = 114.721 (2)°

  • V = 3303.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.40 × 0.36 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.982

  • 8056 measured reflections

  • 2907 independent reflections

  • 1411 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.187

  • S = 1.01

  • 2907 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.16 3.014 (4) 171
N1—H1B⋯O2ii 0.86 2.02 2.867 (4) 169
Symmetry codes: (i) -x, -y+1, -z; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our structural studies of benzopyran derivatives (Kong et al., 2011), we present here the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those in close compounds (Kong et al., 2011; Wang, 2011). The dihedral angle between the C2/C1/O1/C9/C4 plane and the (C2-C4) plane is 9.86( 4 )°. The C2/C1/O1/C9/C4 plane forms an angle of 86.43 (12 )° with the phenyl plane C11-C16.

In the crystal structure, intermolecular N—H···N and N—H···O hydrogen bonds (Table 1) link molecules into corrugated layers parallel to bc plane.

Related literature top

For the crystal structures of related compounds, see: Kong et al. (2011); Wang (2011).

Experimental top

Malononitrile (6 mmol), 1,3-cyclohexanedione (6 mmol) and N,N-dimethylbenzaldehyde (6 mmol) were dissolved in 20 ml ethanol ml in a round-bottom flask. The mixture was warmed, with agitation, to 363 K over a period of 5 h. The resulting solution was cooled. Crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation.

Refinement top

All H atoms were placed in geometrically idealized positions (N-H 0.86 and C-H 0.93-0.97 Å ) and treated as riding on their parent atoms, with Uiso(H) = 1.2-1.5 Ueq (C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 30% probability level.
2-Amino-4-[4-(dimethylamino)phenyl]-5-oxo-5,6,7,8-tetrahydro- 4H-chromene-3-carbonitrile top
Crystal data top
C18H19N3O2F(000) = 1312
Mr = 309.36Dx = 1.244 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.021 (3) ÅCell parameters from 1265 reflections
b = 8.8724 (8) Åθ = 2.5–21.3°
c = 16.3827 (16) ŵ = 0.08 mm1
β = 114.721 (2)°T = 298 K
V = 3303.5 (5) Å3Block, red
Z = 80.40 × 0.36 × 0.22 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2907 independent reflections
Radiation source: fine-focus sealed tube1411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2925
Tmin = 0.968, Tmax = 0.982k = 108
8056 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0818P)2 + 1.1159P]
where P = (Fo2 + 2Fc2)/3
2907 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H19N3O2V = 3303.5 (5) Å3
Mr = 309.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.021 (3) ŵ = 0.08 mm1
b = 8.8724 (8) ÅT = 298 K
c = 16.3827 (16) Å0.40 × 0.36 × 0.22 mm
β = 114.721 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1411 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.982Rint = 0.062
8056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
2907 reflectionsΔρmin = 0.21 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05600 (14)0.2235 (3)0.03033 (19)0.0617 (9)
H1A0.04170.31290.04330.074*
H1B0.06520.17420.06790.074*
N20.00475 (15)0.4788 (4)0.0962 (2)0.0641 (10)
N30.23314 (16)0.5169 (4)0.4808 (3)0.0788 (11)
O10.08809 (11)0.0187 (2)0.05519 (15)0.0530 (7)
O20.07367 (12)0.0804 (3)0.32595 (18)0.0683 (8)
C10.06404 (14)0.1610 (4)0.0482 (2)0.0422 (9)
C20.05254 (14)0.2195 (3)0.1146 (2)0.0389 (8)
C30.06843 (14)0.1431 (3)0.2039 (2)0.0383 (8)
H30.03270.13850.21450.046*
C40.08682 (14)0.0157 (3)0.1978 (2)0.0390 (8)
C50.08851 (16)0.1218 (4)0.2673 (3)0.0543 (10)
C60.1057 (2)0.2815 (4)0.2617 (3)0.0838 (15)
H6A0.07040.34190.23350.101*
H6B0.12760.31990.32200.101*
C70.1428 (2)0.2992 (4)0.2089 (3)0.0866 (15)
H7A0.18140.25570.24270.104*
H7B0.14790.40550.20030.104*
C80.11417 (18)0.2228 (4)0.1188 (3)0.0613 (11)
H8A0.14170.21930.09110.074*
H8B0.08010.28050.07990.074*
C90.09573 (14)0.0674 (4)0.1286 (2)0.0449 (9)
C100.02665 (16)0.3637 (4)0.1031 (2)0.0428 (9)
C110.11413 (14)0.2331 (3)0.2807 (2)0.0386 (8)
C120.16973 (16)0.2606 (4)0.2860 (3)0.0555 (10)
H120.18080.21710.24380.067*
C130.20934 (17)0.3510 (4)0.3524 (3)0.0633 (11)
H130.24640.36730.35370.076*
C140.19513 (17)0.4180 (4)0.4172 (3)0.0522 (10)
C150.13956 (18)0.3880 (4)0.4126 (2)0.0572 (10)
H150.12830.42970.45510.069*
C160.10079 (15)0.2973 (4)0.3461 (2)0.0490 (9)
H160.06400.27880.34540.059*
C170.2940 (2)0.5246 (5)0.4932 (4)0.1074 (19)
H17A0.31290.42990.51580.161*
H17B0.31390.60300.53540.161*
H17C0.29530.54600.43670.161*
C180.2225 (2)0.5576 (6)0.5575 (3)0.1047 (18)
H18A0.18390.60070.53770.157*
H18B0.25130.62990.59320.157*
H18C0.22510.46940.59290.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.104 (3)0.0475 (19)0.046 (2)0.0274 (17)0.0439 (19)0.0138 (15)
N20.092 (3)0.048 (2)0.059 (2)0.0198 (19)0.038 (2)0.0132 (16)
N30.069 (3)0.064 (2)0.079 (3)0.0101 (19)0.006 (2)0.019 (2)
O10.0782 (18)0.0426 (15)0.0480 (16)0.0211 (13)0.0360 (14)0.0096 (12)
O20.097 (2)0.0645 (18)0.0472 (17)0.0115 (15)0.0338 (16)0.0095 (14)
C10.050 (2)0.038 (2)0.040 (2)0.0075 (16)0.0202 (17)0.0037 (16)
C20.045 (2)0.037 (2)0.0331 (19)0.0050 (15)0.0149 (16)0.0038 (15)
C30.042 (2)0.0386 (19)0.037 (2)0.0015 (15)0.0187 (16)0.0036 (15)
C40.047 (2)0.0325 (19)0.0336 (19)0.0056 (15)0.0128 (16)0.0051 (15)
C50.066 (3)0.046 (2)0.040 (2)0.0094 (19)0.011 (2)0.0049 (18)
C60.139 (4)0.039 (2)0.061 (3)0.002 (2)0.030 (3)0.015 (2)
C70.120 (4)0.046 (3)0.081 (3)0.025 (3)0.029 (3)0.016 (2)
C80.074 (3)0.040 (2)0.067 (3)0.0051 (19)0.027 (2)0.0000 (19)
C90.052 (2)0.035 (2)0.045 (2)0.0021 (16)0.0178 (18)0.0088 (17)
C100.060 (2)0.039 (2)0.033 (2)0.0017 (18)0.0232 (17)0.0030 (16)
C110.044 (2)0.0339 (19)0.036 (2)0.0044 (15)0.0153 (16)0.0061 (15)
C120.049 (2)0.064 (3)0.058 (3)0.001 (2)0.026 (2)0.007 (2)
C130.042 (2)0.070 (3)0.074 (3)0.004 (2)0.021 (2)0.008 (2)
C140.056 (3)0.033 (2)0.052 (2)0.0002 (18)0.008 (2)0.0012 (18)
C150.073 (3)0.051 (2)0.051 (2)0.005 (2)0.029 (2)0.0125 (19)
C160.049 (2)0.052 (2)0.048 (2)0.0072 (18)0.0225 (19)0.0072 (18)
C170.062 (3)0.083 (4)0.132 (5)0.018 (3)0.003 (3)0.018 (3)
C180.124 (4)0.085 (3)0.072 (4)0.020 (3)0.009 (3)0.037 (3)
Geometric parameters (Å, º) top
N1—C11.337 (4)C7—C81.505 (5)
N1—H1A0.8600C7—H7A0.9700
N1—H1B0.8600C7—H7B0.9700
N2—C101.141 (4)C8—C91.484 (5)
N3—C141.390 (5)C8—H8A0.9700
N3—C181.435 (6)C8—H8B0.9700
N3—C171.450 (5)C11—C161.372 (4)
O1—C91.369 (4)C11—C121.379 (5)
O1—C11.383 (4)C12—C131.381 (5)
O2—C51.222 (4)C12—H120.9300
C1—C21.341 (4)C13—C141.387 (5)
C2—C101.411 (5)C13—H130.9300
C2—C31.507 (4)C14—C151.386 (5)
C3—C41.498 (4)C15—C161.376 (5)
C3—C111.524 (4)C15—H150.9300
C3—H30.9800C16—H160.9300
C4—C91.326 (4)C17—H17A0.9600
C4—C51.464 (5)C17—H17B0.9600
C5—C61.495 (5)C17—H17C0.9600
C6—C71.517 (6)C18—H18A0.9600
C6—H6A0.9700C18—H18B0.9600
C6—H6B0.9700C18—H18C0.9600
C1—N1—H1A120.0C7—C8—H8A109.5
C1—N1—H1B120.0C9—C8—H8B109.5
H1A—N1—H1B120.0C7—C8—H8B109.5
C14—N3—C18119.7 (4)H8A—C8—H8B108.1
C14—N3—C17118.9 (4)C4—C9—O1123.1 (3)
C18—N3—C17115.7 (4)C4—C9—C8125.8 (3)
C9—O1—C1118.6 (2)O1—C9—C8111.1 (3)
N1—C1—C2128.6 (3)N2—C10—C2177.2 (4)
N1—C1—O1110.1 (3)C16—C11—C12116.5 (3)
C2—C1—O1121.3 (3)C16—C11—C3121.2 (3)
C1—C2—C10119.0 (3)C12—C11—C3122.3 (3)
C1—C2—C3123.7 (3)C11—C12—C13121.7 (3)
C10—C2—C3117.3 (3)C11—C12—H12119.2
C4—C3—C2108.8 (3)C13—C12—H12119.2
C4—C3—C11113.7 (3)C12—C13—C14121.5 (4)
C2—C3—C11111.5 (3)C12—C13—H13119.2
C4—C3—H3107.5C14—C13—H13119.2
C2—C3—H3107.5C15—C14—C13116.6 (3)
C11—C3—H3107.5C15—C14—N3121.2 (4)
C9—C4—C5118.8 (3)C13—C14—N3122.1 (4)
C9—C4—C3123.3 (3)C16—C15—C14121.0 (3)
C5—C4—C3117.6 (3)C16—C15—H15119.5
O2—C5—C4119.9 (3)C14—C15—H15119.5
O2—C5—C6121.6 (3)C11—C16—C15122.7 (3)
C4—C5—C6118.5 (4)C11—C16—H16118.6
C5—C6—C7113.2 (3)C15—C16—H16118.6
C5—C6—H6A108.9N3—C17—H17A109.5
C7—C6—H6A108.9N3—C17—H17B109.5
C5—C6—H6B108.9H17A—C17—H17B109.5
C7—C6—H6B108.9N3—C17—H17C109.5
H6A—C6—H6B107.8H17A—C17—H17C109.5
C8—C7—C6111.0 (4)H17B—C17—H17C109.5
C8—C7—H7A109.4N3—C18—H18A109.5
C6—C7—H7A109.4N3—C18—H18B109.5
C8—C7—H7B109.4H18A—C18—H18B109.5
C6—C7—H7B109.4N3—C18—H18C109.5
H7A—C7—H7B108.0H18A—C18—H18C109.5
C9—C8—C7110.8 (3)H18B—C18—H18C109.5
C9—C8—H8A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.163.014 (4)171
N1—H1B···O2ii0.862.022.867 (4)169
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC18H19N3O2
Mr309.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)25.021 (3), 8.8724 (8), 16.3827 (16)
β (°) 114.721 (2)
V3)3303.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.36 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8056, 2907, 1411
Rint0.062
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.187, 1.01
No. of reflections2907
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.163.014 (4)170.6
N1—H1B···O2ii0.862.022.867 (4)169.0
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1/2.
 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKong, L., Ju, X., Qiao, Y., Zhang, J. & Gao, Z. (2011). Acta Cryst. E67. In the press.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. (2011). Acta Cryst. E67, o832.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds