metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[4-(benz­yl­oxy)phen­yl]-4,4,4-tri­fluoro­butane-1,3-dionato(1−)}dipyri­dine­cobalt(II)

aCollege of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
*Correspondence e-mail: fanlinghbnu@163.com

(Received 14 October 2011; accepted 18 October 2011; online 29 October 2011)

In the title compound, [Co(C17H12F3O3)2(C5H5N)2], the CoII ion is situated on a twofold rotation axis, coordinated by four O atoms from two 1-[4-(benz­yloxy)phen­yl]-4,4,4-trifluoro­butane-1,3-dionate(1−) (L) ligands and two N atoms from two pyridine ligands in a distorted octa­hedral geometry. The two pyridine rings form a dihedral angle of 84.63 (7)°. The two benzene rings in L are twisted at 58.83 (5)°. Weak inter­molecular C—H⋯F hydrogen bonds consolidate the crystal packing.

Related literature

For the crystal structures of other complexes of transition metal ions with β-diketonate ligands, see: Melnik et al. (1999[Melnik, M., Kabesova, M., Koman, M., Macaskova, L. & Holloway, C. E. (1999). J. Coord. Chem. 48, 271-374.]); Soldatov et al. (2003[Soldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826-3840.]); Youngme et al. (2007[Youngme, S., Chotkhun, T., Chaichit, N., van Albada, G. A. & Reedijk, J. (2007). Inorg. Chem. Commun. 10, 843-848.]); Feng (2002[Feng, Y.-L. (2002). Chin. J. Inorg. Chem. 18, 723-725.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C17H12F3O3)2(C5H5N)2]

  • Mr = 859.66

  • Monoclinic, C 2/c

  • a = 16.5435 (11) Å

  • b = 10.7359 (7) Å

  • c = 23.0706 (14) Å

  • β = 107.333 (1)°

  • V = 3911.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.903, Tmax = 0.970

  • 21577 measured reflections

  • 4453 independent reflections

  • 2849 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.151

  • S = 1.09

  • 4453 reflections

  • 267 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F2i 0.93 2.62 3.385 (3) 140
C19—H19⋯F3ii 0.93 2.63 3.348 (3) 134
C7—H7B⋯F1ii 0.97 2.62 3.507 (3) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination complexes of metal ions with β-diketonate ligands have proven useful in a wide range of application (Melnik et al., 1999; Soldatov et al., 2003; Youngme et al., 2007). The modification of the steric properties of the β-diketonate ligand is significant as a means of controlling the ability for additional ligand binding. Herein, we report the crystal structure of the title compound (I), which is a pyridine adduct of cobalt(II) complex with ligand 1-(4-(benzyloxy)phenyl)-4,4,4-trifluorobutane-1,3-dione (Fig. 1).

In (I), the cobalt(II) is six-coordinated by four O atoms of the ligands and two N atoms of pyridines, giving an octahedral geometry. Atoms O2, O3, O2a and N1 form an equatorial plane, while N1a and O3a occupy the axial positions. The coordinating bond lengths [Co1—N1 = 2.158 (2) Å, Co1—O2 = 2.055 (2) Å, Co1—O3 = 2.088 (2) Å] are in good agree with those found in other CoII β-diketonate complex (Feng, 2002). The bond lengths of C14—C15 and C15—C16 are 1.405 (3) and 1.388 (3) Å respectively, which indicate the carbon-carbon double bond in the enol form of ligand is close to the trifluoromethyl group. The angles of O2—Co1—O2a and O3—Co1—N1 are 176.53 (10)° and 176.47 (7)° respectively, suggesting almost coplanar nature of O2, O3, O2a, N1 and Co1 (largest deviation 0.06 Å). Two pyridyl rings are nearly perpendicular with the dihedral angle of 84.63 (7)°. The dihedral angle between two phenyl rings of C1–C6 and C8–C13 in each independent ligand is 58.83 (2)°. Weak intermolecular C—H···F hydrogen bonds (Table 1) consolidate the crystal packing.

Related literature top

For the crystal structures of other complexes of transition metal ions with β-diketonate ligands, see: Melnik et al. (1999); Soldatov et al. (2003); Youngme et al. (2007); Feng (2002).

Experimental top

To a hot ethanol solution (25 ml) of the ligand (644 mg, 2.0 mmol) and pyridine (316 mg, 4.0 mmol) was added slowly to 20 ml water solution of cobalt(II) acetate tetrahydrate (250 mg, 1.0 mmol). The mixture was stirred for another 6 h. After filtration, the red solution was allowed to stand at room temperature. Red block-shaped crystals suitable for X-ray analysis were obtained after several days.

Refinement top

C-bound H atoms were positioned geometrically (C—H 0.93-0.97 Å), and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title complex with the atom-numbering scheme [symmetry code: (a) -x + 1, y, -z + 3/2]. Displacement ellipsoids are drawn at the 30% probability level.
Bis{1-[4-(benzyloxy)phenyl]-4,4,4-trifluorobutane-1,3- dionato(1-)}dipyridinecobalt(II) top
Crystal data top
[Co(C17H12F3O3)2(C5H5N)2]F(000) = 1764
Mr = 859.66Dx = 1.460 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 3520 reflections
a = 16.5435 (11) Åθ = 2.3–21.5°
b = 10.7359 (7) ŵ = 0.52 mm1
c = 23.0706 (14) ÅT = 293 K
β = 107.333 (1)°Plate, red
V = 3911.5 (4) Å30.20 × 0.20 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4453 independent reflections
Radiation source: fine-focus sealed tube2849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.903, Tmax = 0.970k = 1313
21577 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0783P)2]
where P = (Fo2 + 2Fc2)/3
4453 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Co(C17H12F3O3)2(C5H5N)2]V = 3911.5 (4) Å3
Mr = 859.66Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.5435 (11) ŵ = 0.52 mm1
b = 10.7359 (7) ÅT = 293 K
c = 23.0706 (14) Å0.20 × 0.20 × 0.06 mm
β = 107.333 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4453 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2849 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.970Rint = 0.051
21577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.09Δρmax = 0.46 e Å3
4453 reflectionsΔρmin = 0.40 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.98662 (4)0.75000.04247 (19)
C10.2027 (2)1.0025 (3)1.12451 (16)0.0696 (9)
H10.25751.03241.14080.083*
C20.1457 (3)1.0136 (3)1.15707 (18)0.0827 (11)
H20.16241.05181.19500.099*
C30.0658 (2)0.9698 (3)1.1347 (2)0.0795 (11)
H30.02760.97731.15700.095*
C40.0423 (2)0.9151 (4)1.0796 (2)0.0914 (12)
H40.01260.88491.06390.110*
C50.0993 (2)0.9034 (3)1.04600 (15)0.0755 (10)
H50.08240.86501.00820.091*
C60.17965 (17)0.9480 (3)1.06829 (13)0.0492 (6)
C70.24232 (19)0.9304 (3)1.03333 (14)0.0583 (7)
H7A0.28920.87951.05660.070*
H7B0.21540.88800.99530.070*
C80.32766 (16)1.0515 (3)0.98741 (12)0.0477 (6)
C90.35554 (17)1.1677 (3)0.97581 (13)0.0556 (7)
H90.33971.23820.99320.067*
C100.40662 (16)1.1793 (3)0.93861 (12)0.0506 (7)
H100.42531.25790.93140.061*
C110.43073 (14)1.0755 (2)0.91162 (10)0.0404 (6)
C120.40418 (16)0.9594 (3)0.92536 (12)0.0485 (6)
H120.42080.88850.90870.058*
C130.35399 (17)0.9467 (3)0.96295 (12)0.0505 (7)
H130.33770.86780.97200.061*
C140.47827 (15)1.0839 (2)0.86654 (11)0.0409 (6)
C150.52962 (16)1.1877 (3)0.86562 (12)0.0500 (7)
H150.53101.25170.89300.060*
C160.57835 (15)1.2005 (2)0.82633 (11)0.0447 (6)
C170.63094 (19)1.3182 (3)0.83179 (14)0.0593 (8)
C180.35055 (18)0.8074 (3)0.74601 (13)0.0572 (7)
H180.35120.84810.78170.069*
C190.29215 (18)0.7144 (3)0.72501 (14)0.0635 (8)
H190.25460.69290.74640.076*
C200.28972 (18)0.6538 (3)0.67243 (14)0.0606 (8)
H200.25040.59110.65710.073*
C210.34664 (19)0.6878 (3)0.64308 (15)0.0643 (8)
H210.34710.64760.60750.077*
C220.40313 (18)0.7815 (3)0.66633 (14)0.0594 (8)
H220.44100.80390.64540.071*
F10.63339 (13)1.38935 (18)0.87896 (9)0.0861 (6)
F20.60161 (18)1.3903 (2)0.78411 (10)0.1257 (10)
F30.71007 (13)1.2954 (2)0.83588 (14)0.1230 (10)
N10.40663 (13)0.8423 (2)0.71752 (9)0.0465 (5)
O10.27283 (12)1.04931 (18)1.02143 (9)0.0609 (5)
O20.47050 (12)0.99242 (15)0.83042 (9)0.0498 (5)
O30.58708 (11)1.12821 (17)0.78575 (8)0.0514 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0523 (3)0.0441 (3)0.0385 (3)0.0000.0251 (2)0.000
C10.070 (2)0.086 (3)0.062 (2)0.0213 (16)0.0346 (17)0.0153 (17)
C20.102 (3)0.093 (3)0.071 (2)0.013 (2)0.054 (2)0.0122 (19)
C30.083 (2)0.086 (3)0.094 (3)0.0053 (19)0.064 (2)0.012 (2)
C40.0536 (19)0.123 (3)0.105 (3)0.015 (2)0.0365 (19)0.001 (3)
C50.066 (2)0.099 (3)0.064 (2)0.0083 (18)0.0222 (16)0.0125 (19)
C60.0547 (15)0.0519 (16)0.0497 (16)0.0011 (13)0.0290 (13)0.0063 (13)
C70.0691 (18)0.0594 (19)0.0571 (18)0.0001 (15)0.0353 (15)0.0042 (15)
C80.0497 (14)0.0545 (17)0.0469 (15)0.0009 (12)0.0265 (12)0.0009 (13)
C90.0690 (17)0.0505 (17)0.0608 (18)0.0067 (14)0.0400 (14)0.0142 (14)
C100.0596 (15)0.0477 (16)0.0550 (17)0.0094 (12)0.0331 (13)0.0067 (13)
C110.0429 (13)0.0462 (15)0.0358 (13)0.0003 (11)0.0175 (11)0.0012 (11)
C120.0582 (15)0.0455 (16)0.0507 (16)0.0075 (12)0.0300 (13)0.0005 (12)
C130.0642 (17)0.0445 (16)0.0553 (17)0.0008 (13)0.0369 (14)0.0050 (13)
C140.0461 (13)0.0462 (16)0.0338 (13)0.0015 (11)0.0173 (11)0.0009 (11)
C150.0575 (15)0.0524 (17)0.0477 (15)0.0071 (13)0.0275 (13)0.0100 (13)
C160.0461 (13)0.0498 (16)0.0423 (15)0.0029 (11)0.0194 (11)0.0005 (12)
C170.0678 (18)0.065 (2)0.0558 (19)0.0145 (15)0.0350 (15)0.0097 (16)
C180.0678 (18)0.0599 (19)0.0512 (16)0.0076 (14)0.0288 (14)0.0048 (14)
C190.0602 (17)0.069 (2)0.070 (2)0.0099 (15)0.0314 (15)0.0027 (17)
C200.0567 (17)0.0530 (18)0.070 (2)0.0054 (13)0.0151 (15)0.0021 (15)
C210.0685 (18)0.063 (2)0.0646 (19)0.0064 (15)0.0252 (16)0.0197 (16)
C220.0652 (17)0.0582 (19)0.0625 (19)0.0050 (14)0.0310 (15)0.0139 (15)
F10.1119 (15)0.0785 (13)0.0865 (13)0.0420 (11)0.0579 (11)0.0326 (11)
F20.188 (3)0.0923 (17)0.0835 (15)0.0641 (16)0.0195 (16)0.0237 (13)
F30.0777 (13)0.1051 (18)0.212 (3)0.0376 (12)0.0821 (16)0.0510 (18)
N10.0490 (11)0.0471 (13)0.0478 (13)0.0008 (10)0.0214 (10)0.0004 (10)
O10.0777 (13)0.0566 (12)0.0695 (14)0.0051 (10)0.0541 (11)0.0034 (10)
O20.0649 (11)0.0468 (11)0.0468 (11)0.0052 (8)0.0305 (9)0.0048 (8)
O30.0592 (11)0.0514 (11)0.0547 (11)0.0069 (8)0.0339 (9)0.0066 (9)
Geometric parameters (Å, º) top
Co1—O22.0553 (18)C10—H100.9300
Co1—O2i2.0553 (18)C11—C121.389 (4)
Co1—O32.0877 (18)C11—C141.482 (3)
Co1—O3i2.0877 (18)C12—C131.375 (3)
Co1—N1i2.158 (2)C12—H120.9300
Co1—N12.158 (2)C13—H130.9300
C1—C61.369 (4)C14—O21.269 (3)
C1—C21.374 (4)C14—C151.405 (3)
C1—H10.9300C15—C161.388 (3)
C2—C31.353 (5)C15—H150.9300
C2—H20.9300C16—O31.257 (3)
C3—C41.347 (5)C16—C171.518 (4)
C3—H30.9300C17—F31.307 (3)
C4—C51.395 (4)C17—F21.314 (4)
C4—H40.9300C17—F11.320 (3)
C5—C61.361 (4)C18—N11.341 (3)
C5—H50.9300C18—C191.373 (4)
C6—C71.503 (4)C18—H180.9300
C7—O11.429 (3)C19—C201.367 (4)
C7—H7A0.9700C19—H190.9300
C7—H7B0.9700C20—C211.363 (4)
C8—O11.365 (3)C20—H200.9300
C8—C91.384 (4)C21—C221.369 (4)
C8—C131.386 (4)C21—H210.9300
C9—C101.378 (3)C22—N11.336 (3)
C9—H90.9300C22—H220.9300
C10—C111.392 (3)
O2—Co1—O2i176.53 (10)C11—C10—H10119.4
O2—Co1—O386.72 (7)C12—C11—C10117.7 (2)
O2i—Co1—O390.75 (7)C12—C11—C14119.0 (2)
O2—Co1—O3i90.75 (7)C10—C11—C14123.2 (2)
O2i—Co1—O3i86.72 (7)C13—C12—C11121.6 (2)
O3—Co1—O3i86.54 (10)C13—C12—H12119.2
O2—Co1—N1i92.64 (8)C11—C12—H12119.2
O2i—Co1—N1i89.85 (7)C12—C13—C8119.9 (2)
O3—Co1—N1i92.71 (8)C12—C13—H13120.1
O3i—Co1—N1i176.47 (7)C8—C13—H13120.1
O2—Co1—N189.85 (7)O2—C14—C15123.2 (2)
O2i—Co1—N192.65 (8)O2—C14—C11116.3 (2)
O3—Co1—N1176.47 (7)C15—C14—C11120.6 (2)
O3i—Co1—N192.71 (8)C16—C15—C14124.1 (2)
N1i—Co1—N188.26 (11)C16—C15—H15118.0
C6—C1—C2120.8 (3)C14—C15—H15118.0
C6—C1—H1119.6O3—C16—C15130.0 (2)
C2—C1—H1119.6O3—C16—C17112.7 (2)
C3—C2—C1120.9 (4)C15—C16—C17117.3 (2)
C3—C2—H2119.6F3—C17—F2106.4 (3)
C1—C2—H2119.6F3—C17—F1105.4 (3)
C4—C3—C2119.1 (3)F2—C17—F1105.2 (3)
C4—C3—H3120.5F3—C17—C16112.8 (3)
C2—C3—H3120.5F2—C17—C16111.2 (2)
C3—C4—C5120.7 (3)F1—C17—C16115.2 (2)
C3—C4—H4119.6N1—C18—C19123.2 (3)
C5—C4—H4119.6N1—C18—H18118.4
C6—C5—C4120.3 (3)C19—C18—H18118.4
C6—C5—H5119.9C20—C19—C18119.4 (3)
C4—C5—H5119.9C20—C19—H19120.3
C5—C6—C1118.2 (3)C18—C19—H19120.3
C5—C6—C7120.3 (3)C21—C20—C19118.1 (3)
C1—C6—C7121.3 (3)C21—C20—H20120.9
O1—C7—C6109.3 (2)C19—C20—H20120.9
O1—C7—H7A109.8C20—C21—C22119.6 (3)
C6—C7—H7A109.8C20—C21—H21120.2
O1—C7—H7B109.8C22—C21—H21120.2
C6—C7—H7B109.8N1—C22—C21123.4 (3)
H7A—C7—H7B108.3N1—C22—H22118.3
O1—C8—C9116.3 (2)C21—C22—H22118.3
O1—C8—C13124.3 (2)C22—N1—C18116.3 (2)
C9—C8—C13119.4 (2)C22—N1—Co1119.75 (18)
C10—C9—C8120.2 (2)C18—N1—Co1123.97 (18)
C10—C9—H9119.9C8—O1—C7117.3 (2)
C8—C9—H9119.9C14—O2—Co1127.68 (15)
C9—C10—C11121.1 (2)C16—O3—Co1121.67 (15)
C9—C10—H10119.4
C6—C1—C2—C30.7 (6)C18—C19—C20—C210.7 (5)
C1—C2—C3—C40.3 (6)C19—C20—C21—C220.8 (5)
C2—C3—C4—C50.1 (6)C20—C21—C22—N10.7 (5)
C3—C4—C5—C60.4 (6)C21—C22—N1—C180.3 (4)
C4—C5—C6—C10.9 (5)C21—C22—N1—Co1179.1 (2)
C4—C5—C6—C7177.3 (3)C19—C18—N1—C220.2 (4)
C2—C1—C6—C51.0 (5)C19—C18—N1—Co1179.3 (2)
C2—C1—C6—C7177.4 (3)O2—Co1—N1—C22169.9 (2)
C5—C6—C7—O1122.3 (3)O2i—Co1—N1—C2212.5 (2)
C1—C6—C7—O161.4 (4)O3—Co1—N1—C22176.8 (11)
O1—C8—C9—C10175.8 (2)O3i—Co1—N1—C2299.3 (2)
C13—C8—C9—C102.2 (4)N1i—Co1—N1—C2277.3 (2)
C8—C9—C10—C110.5 (4)O2—Co1—N1—C189.5 (2)
C9—C10—C11—C122.4 (4)O2i—Co1—N1—C18168.1 (2)
C9—C10—C11—C14173.7 (2)O3—Co1—N1—C183.8 (13)
C10—C11—C12—C131.7 (4)O3i—Co1—N1—C1881.3 (2)
C14—C11—C12—C13174.6 (2)N1i—Co1—N1—C18102.1 (2)
C11—C12—C13—C81.0 (4)C9—C8—O1—C7179.2 (2)
O1—C8—C13—C12174.9 (3)C13—C8—O1—C71.3 (4)
C9—C8—C13—C122.9 (4)C6—C7—O1—C8177.0 (2)
C12—C11—C14—O220.2 (3)C15—C14—O2—Co117.7 (3)
C10—C11—C14—O2155.8 (2)C11—C14—O2—Co1163.27 (16)
C12—C11—C14—C15158.8 (2)O2i—Co1—O2—C1417.4 (2)
C10—C11—C14—C1525.2 (4)O3—Co1—O2—C1425.9 (2)
O2—C14—C15—C161.3 (4)O3i—Co1—O2—C1460.6 (2)
C11—C14—C15—C16177.7 (2)N1i—Co1—O2—C14118.5 (2)
C14—C15—C16—O30.0 (5)N1—Co1—O2—C14153.3 (2)
C14—C15—C16—C17179.4 (2)C15—C16—O3—Co118.4 (4)
O3—C16—C17—F350.1 (3)C17—C16—O3—Co1162.15 (18)
C15—C16—C17—F3129.5 (3)O2—Co1—O3—C1624.7 (2)
O3—C16—C17—F269.4 (3)O2i—Co1—O3—C16152.9 (2)
C15—C16—C17—F2111.1 (3)O3i—Co1—O3—C1666.22 (18)
O3—C16—C17—F1171.1 (2)N1i—Co1—O3—C16117.23 (19)
C15—C16—C17—F18.5 (4)N1—Co1—O3—C1611.5 (13)
N1—C18—C19—C200.4 (5)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F2ii0.932.623.385 (3)140
C19—H19···F3iii0.932.633.348 (3)134
C7—H7B···F1iii0.972.623.507 (3)152
Symmetry codes: (ii) x1/2, y+5/2, z+1/2; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Co(C17H12F3O3)2(C5H5N)2]
Mr859.66
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.5435 (11), 10.7359 (7), 23.0706 (14)
β (°) 107.333 (1)
V3)3911.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.20 × 0.20 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.903, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
21577, 4453, 2849
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.09
No. of reflections4453
No. of parameters267
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F2i0.932.623.385 (3)140.1
C19—H19···F3ii0.932.633.348 (3)134.4
C7—H7B···F1ii0.972.623.507 (3)151.7
Symmetry codes: (i) x1/2, y+5/2, z+1/2; (ii) x1/2, y1/2, z.
 

Acknowledgements

The authors are grateful to Hubei Normal University for financial support (grant No. 2009F104).

References

First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, Y.-L. (2002). Chin. J. Inorg. Chem. 18, 723–725.  CAS Google Scholar
First citationMelnik, M., Kabesova, M., Koman, M., Macaskova, L. & Holloway, C. E. (1999). J. Coord. Chem. 48, 271–374.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826–3840.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoungme, S., Chotkhun, T., Chaichit, N., van Albada, G. A. & Reedijk, J. (2007). Inorg. Chem. Commun. 10, 843–848.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds